Aztec Network
7 Feb
## min read

From zero to nowhere: smart contract programming in Huff (1/4)

In this series, learn smart contract programming in Huff directly from Zac.

Share
Written by
Zac Williamson
Edited by

Hello there!

I want to write about a piece of runoff that has oozed out of the primordial slop on the AZTEC factory floor: …Huff.

Huff is an Ethereum smart contract programming ‘language’ that was developed while writing weierstrudel, an elliptic curve arithmetic library for validating zero-knowledge proofs.

Elliptic curve arithmetic is computationally expensive, so developing an efficient implementation was paramount, and not something that could be done in native Solidity.

It wasn’t even something that could be done in Solidity inline assembly, so we made Huff.

To call Huff a language is being generous — it’s about as close as one can get to EVM assembly code, with a few bits of syntactic sugar bolted on.

Huff programs are composed of macros, where each macro in turn is composed of a combination of more macros and EVM assembly opcodes. When a macro is invoked, template parameters can be supplied to the macro, which themselves are macros.

Unlike a LISP-like language or something with sensible semantics, Huff doesn’t really have expressions either. That would require things like knowing how many variables a Huff macro adds to the stack at compile time, or expecting a Huff macro to not occasionally jump into the middle of another macro. Or assuming a Huff macro won’t completely mangle the program counter by mapping variables to jump destinations in a lookup table. You know, completely unreasonable expectations.Huff doesn’t have functions. Huff doesn’t even have variables, only macros.

Huff is good for one thing, though, which is writing extremely gas-optimised code.The kind of code where the overhead of the jump instruction in a function call is too expensive.

The kind of code where an extra swap instruction for a variable assignment is an outrageous luxury.At the very least, it does this quite well. The weierstrudel library performs elliptic curve multiple-scalar multiplication for less gas than the Ethereum’s “precompile” smart contract. An analogous Solidity smart contract is ~30–100 times more expensive.

It also enables complicated algorithms to be broken down into constituent macros that can be rigorously tested, which is useful.

Huff is also a game, played on a chess-board. One player has chess pieces, the other draughts pieces. The rules don’t make any sense, the game is deliberately confusing and it is an almost mathematical certainty that the draughts player will lose. You won’t find references to this game online because it was “invented” in a pub by some colleagues of mine in a past career and promptly forgotten about for being a terrible game.

I found that writing Huff macros invoked similar emotions to playing Huff, hence the name.

{{blog_divider}}

Programming in Huff

Given the absence of any documentation, I figured it might be illuminating to write a short series in how to write a smart contract in Huff. You know, if you’re looking for time to kill and you’ve run out of more interesting things to do like watch paint dry or rub salt in your eyes.

If you want to investigate further, you’ll find Huff on GitHub. For some demonstration Huff code, the weierstrudel smart contract is written entirely in Huff.

{{blog_divider}}

“Hello World” — an ERC20 implementation in Huff

Picture the scene — the year is 2020 and the world is reeling from a new global financial crisis. With the collapse of the monetary base, capital flees to the only store of stable value that can be found — first-generation Crypto-Kitties. Amidst this global carnage, Ethereum has failed to achieve its scaling milestones and soaring gas fees cripple the network.It is a world on the brink, where one single edict is etched into the minds citizens from San Francisco to Shanghai — The tokens must flow…or else.

This is truly the darkest timeline, and in the darkest timeline, we code in Huff.

{{blog_divider}}

Finding our feet

We’re going to write an ERC20 token contract. But not just any ERC20 contract— we’re going to write an ERC20 contract where every opcode must justify its place, or be scourged from existence…

Let’s start by looking at the Solidity interface for a ‘mintable’ token — there’s not much point in an ERC20 contract if it doesn’t have any tokens, after all.

function totalSupply() public view returns (uint);

function balanceOf(address tokenOwner) public view returns (uint);

function allowance(address tokenOwner, address spender) public view returns (uint);

function transfer(address to, uint tokens) public returns (bool);

function approve(address spender, uint tokens) public returns (bool);

function transferFrom(address from, address to, uint tokens) public returns (bool);

function mint(address to, uint tokens) public returns (bool);

event Transfer(address indexed from, address indexed to, uint tokens);

event Approval(address indexed tokenOwner, address indexed spender, uint tokens);

That doesn’t look so bad, how hard can this be?

{{blog_divider}}

Bootstrapping

Before we start writing the main subroutines, remember that Huff doesn’t do variables. But there’s a macro for that! Specifically, we need to be able to identify storage locations with something that resembles a variable.

Let’s create some macros that refer to storage locations that we’re going to be storing the smart contract’s state in. For Solidity smart contracts, the compiler will (under the hood) assign every storage variable to a storage pointer and we’re doing the same here.

First up, the storage pointer that maps to token balances:

#define macro BALANCE_LOCATION = takes(0) returns(1) {
   0x00
}

The takes field refers to how many EVM stack items this macro consumes. returns refers to how many EVM stack items this macro will add onto the stack.

Finally, the macro code is just 0x00 . This will push 0 onto the EVM stack; we’re associating balances with the first storage ‘slot’ in our smart contract.

We also need a storage location for the contract’s owner:

#define macro OWNER_LOCATION = takes(0) returns(0) {
   0x01
}

{{blog_divider}}

Implementing SafeMath in Huff

SafeMath is a Solidity library that performs arithmetic operations whilst guarding against integer overflow and underflow.

We need the same functionality in Huff. After all, we wouldn’t want to write unsafe Huff code. That would be irrational.ERC20 is a simple contract, so we will only need addition and subtraction capabilites.

Let’s consider our first macro, MATH__ADD . Normally, this would be a function with two variables as input arguments. But Huff doesn’t have functions.

Huff doesn’t have variables either.

...

Let’s take a step back then. What would this function look like if we were to rip out Solidity’s syntactic sugar? This is the function interface:

function add(uint256 a, uint256 b) internal view returns (uint256 c);

Under the hood, when the add function is called, variables a and b will be pushed to the front of the EVM’s stack.

Behind them on the stack will be a jump label that corresponds to the return destination of this function. But we’re going to ignore that — It’s cheaper to directly graft the function bytecode in-line when its needed, instead of spending gas by messing around with jumps.

So for our first macro, MATH__ADD , we expect first two variables to be at the front of the EVM stack; the variables that we want to add. This macro will consume these two variables, and return the result on the stack. If an integer overflow is triggered, the macro will throw an error.

Starting with the basics, if our stack state is: a, b , we need a+b . Once we have a+b , we need to compare it with either a or b . If either are greater than a+b, we have an integer overflow.

So step1: clone b , creating stack state: b, a, b . We do this with thedup2 opcode. We then call add , which eats the first two stack variables and spits out a+b , leaving us with (a+b), b on the stack.

Next up, we need to validate that a+b >= b. One slight problem here — the Ethereum Virtual Machine doesn’t have an opcode that maps to the >= operator! We only have gt and lt opcodes to work with.

We also have the eq opcode, so we could check whether a+b > band perform a logical OR operation with a+b = b . i.e.:

// stack state: (a+b) b
dup2 dup2 gt // stack state: ((a+b) > b) (a+b)
bdup3 dup3 eq // stack state: ((a+b) = b) ((a+b) > b) (a+b) b
or           // stack state: ((a+b) >= b) (a+b) b

But that’s expensive, we’ve more than doubled the work we’re doing! Each opcode in the above section is 3 gas so we’re chewing through 21 gas to compare two variables. This isn’t Solidity — this is Huff, and it’s time to haggle.

A cheaper alternative is to, instead, validate that (b > (a+b)) == 0 . i.e:

// stack state: (a+b) b
dup1 dup3 gt // stack state: (a > (a+b)) (a+b)
biszero       // stack state: (a > (a+b) == 0) (a+b) b

Much better, only 12 gas. We can almost live with that, but we’re not done bargaining.

We can optimize this further, because once we’ve performed this step, we don’t need bon the stack anymore — we can consume it. We still need (a+b)on the stack however, so we need a swap opcode to get b in front of (a+b) on the program stack. This won’t save us any gas up-front, but we’ll save ourselves an opcode later on in this macro.

dup1 swap2 gt // stack state: (b > (a+b)) (a+b)
iszero        // stack state: ((a+b) >= b) (a+b)

Finally, if a > (a+b) we need to throw an error. When implementing “if <x> throw an error”, we have two options to take, because of how thejumpi instruction works.

jumpi is how the EVM performs conditional branching. jumpi will consume the top two variables on the stack. It will treat the second variable as a position in the program’s program counter, and will jump to it only if the first variable is not zero.

When throwing errors, we can test for the error condition, and if true jump to a point in the program that will throw an error.

OR we can test for the opposite of the error condition, and if true, jump to a point in the program that skips over some code that throws an error.

For example, this is how we would program option 2 for our safe add macro:

// stack state: ((a+b) >= b) (a+b)
no_overflow jumpi
   0x00 0x00 revert // throw an error
no_overflow:
// continue with algorithm

Option one, on the other hand, looks like this:

// stack state: ((a+b) >= b) (a+b)
iszero // stack state: (b > (a+b)) (a+b)
throw_error jumpi
// continue with algorithm

For our use case, option 2 is more efficient, because if we chain option 2 with our condition test, we end up with:

dup2 add dup1 swap2 gt
iszero
iszero
throw_error jumpi

We can remove the two iszero opcodes because they cancel each other out! Leaving us with the following macro

#define macro MATH__ADD = takes(2) returns(1) {
   // stack state: a b
   dup2 add
   // stack state: (a+b) b
   dup1 swap2 gt
   // stack state: (a > (a+b)) (a+b)
   throw_error jumpi}

However, we have a problem! We haven’t defined our jump label throw_error , or what happens when we hit it. We can’t add it to the end of macro MATH__ADD , because then we would have to jump over the error-throwing code if the error condition was not met.

We would prefer not to have macros that use jump labels that are not declared inside the macro itself. We can solve this by passing the jump label throw_error as a template parameter. It is then the responsibility of the macro that invokes MATH__ADD to supply the correct jump label — which ideally should be a local jump label and not a global one.

Our final macro looks like this:

template <throw_error_jump_label>
#define macro MATH__ADD = takes(2) returns(1) {
   // stack state: a b
   dup2 add
   // stack state: (a+b) a
   dup1 swap2 gt
   // stack state: (a > (a+b)) (a+b)
<throw_error_jump_label> jumpi
}

The jumpi opcode is 10 gas, and the others cost 3 gas (assuming <throw_error_jump_label> eventually will map to a PUSH opcode) — in total 28 gas.As an aside — let’s consider the overhead created by Solidity when calling SafeMath.add(a, b)First, values a and b are duplicated on the stack; functions don’t consume existing stack variables. Next, the return destination, that must be jumped to when the function finishes, is pushed onto the stack. Finally, the jump destination of SafeMath.add is pushed onto the stack and the jump instruction is called.

Once the function has finished its work, the jump instruction is called to jump back to the return destination. The values a , b are then assigned to local variables by identifying the location on the stack that these variables occupy, calling a swap opcode to manoeuvre the return value into the allocated stack location, followed by a pop opcode to remove the old value. This is performed twice for each variable.

In total that’s…

  • 4 dup opcodes (3 gas each)
  • 2 jump opcodes (8 gas each)
  • 2 swap opcodes (3 gas each)
  • 2 pop opcodes (2 gas each)
  • 2 jumpdest opcodes (1 gas each)

To summarise, the act of calling SafeMath.add as a Solidity function would cost 40 gas before the algorithm actually does any work.

To summarise the summary, our MATH__ADD macro does its job in almost half the gas it would cost to process a Solidity function overhead.

To summarise the summary of the summary, this is acceptable Huff code.

{{blog_divider}}

Subtraction

Finally, we need an equivalent macro for subtraction:

template <throw_error_jump_label>
#define macro MATH__SUB = takes(2) returns(1) {
   // stack state: a b
   // calling sub will create (a-b)
   // if (b>a) we have integer underflow - throw an error    dup1 dup3 gt
   // stack state: (b>a) a b<throw_error_jump_label> jumpi
   // stack state: a b
   sub
   // stack state: (a-b)
}

{{blog_divider}}

Utility macros

Next up, we need to define some utility macros we’ll be using . We need macros that validate that the transaction sender has not sent any ether to the smart contract, UTILS__NOT_PAYABLE. For our mint method, we’ll need a macro that validates that the message sender is the contract’s owner, UTILS__ONLY_OWNER:

template<error_location>
#define macro UTILS__NOT_PAYABLE = takes(0) returns(0) {
   callvalue <error_location> jumpi
}

#define macro UTILS__ONLY_OWNER = takes(0) returns(0) {
   OWNER_LOCATION() sload caller eq is_owner jumpi
       0x00 0x00 revert
   is_owner:
}

N.B. revert consumes two stack items. p x revert will take memory starting at x, and return the next p bytes as an error code. We’re not going to worry about error codes here, just throwing an error is good enough.

{{blog_divider}}

Creating the constructor

Now that we’ve set up our helper macros, we’re close to actually being able to write our smart contract methods. Congratulations on nearly reaching step 1!

To start with , we need a constructor. This is just another macro in Huff. Our constructor is very simple — we just need to record who the owner of the contract is. In Solidity it looks like this:

constructor() public {
   owner = msg.sender;
}

And in Huff it looks like this:

#define macro ERC20 = takes(0) returns(0) {
   caller OWNER_LOCATION() sstore
}

The EVM opcode caller will push the message sender’s address onto the stack.

We then push the storage slot we’ve reserved for the owner onto the stack.

Finally we call sstore, which will consume the first two stack items and store the 2nd stack item, using the value of the 1st stack item as the storage pointer.

For more information about storage pointers and how smart contracts manage state — Anreas Olofsson’s Solidity workshop on storage is a great read.

{{blog_divider}}

Parsing the function signature

Are we ready to start writing our smart contract methods yet? Of course not, this is Huff. Huff is efficient, but slow.

I like think of Huff like a trusty tortoise, if the tortoise is actually a hundred rats stitched into a tortoise suit, and each rat is a hundred maggots stitched into a rat suit.

…anyhow, we still need our function selector. But Huff doesn’t do functions; we’re going to have to create them from more basic building blocks.

One of the first pieces of code generated by the Solidity compiler is code to unpick the function signature. A function signature is a unique marker that maps to a function name.

For example, consider the solidity functionfunction balanceOf(address tokenOwner) public view returns (uint balance);The function signature will take the core identifying information of the function:

  • the function name
  • the input argument types

This is represented as a string, i.e. "balanceOf(address)". A keccak256 hash of this string is taken, and the most significant 4 bytes of the hash are then used as the function signature.

This online tool makes it easier to find the signature of a function.

It’s a bit of a mouthful, but it creates a (mostly) unique identifier for any given function — this allows contracts to conform to a defined interface that other smart contracts can call.

For example, if the function signature for a given function varied from contract to contract, it would be impossible to have an ‘ERC20’ token, because other smart contracts wouldn’t know how to construct a given contract’s function signature.

With that out of the way, we will find the function signature in the first 4 bytes of calldata. We need to extract this signature and then figure out what to do with it.

Solidity will create function signature hashes under the hood so you don’t have to, but Huff is a bit too primitive for that. We have to supply them directly. We can identify the ERC20 function signatures by pulling them out of remix:

We can parse a function signature by extracting the first 4 bytes of calldata and then perform a series of if-else statements over every function hash.

We can use the bit-shift instructions in Constantinople to save a bit of gas here. 0x00 calldataload will extract the first 32 bytes of calldata and push it onto the stack in a single EVM word. i.e. the 4 bytes we want are in the most significant byte positions and we need them in the least significant positions.

We can do this with 0x00 calldataload 224 shr

We can execute ‘functions’ by comparing the calldata with a function signature, and jumping to the relevant macro if there is a match. i.e:

0x00 calldataload 224 shr // function signature
dup1 0xa9059cbb eq transfer jumpi
dup1 0x23b872dd eq transfer_from jumpi
dup1 0x70a08231 eq balance_of jumpi
dup1 0xdd62ed3e eq allowance jumpi
dup1 0x095ea7b3 eq approve jumpi
dup1 0x18160ddd eq total_supply jumpi
dup1 0x40c10f19 eq mint jumpi
// If we reach this point, we've reached the fallback function.
// However we don't have anything inside our fallback function!
// We can just exit instead, after checking that callvalue is zero:
UTILS__NOT_PAYABLE<error_location>()
0x00 0x00 return

We want the scope of this macro to be constrained to identifying where to jump — the location of these jump labels is elsewhere in the code. Again, we use template parameters to ensure that jump labels are only explicitly called inside the macros that they are defined in.

Our final macro looks like this:

template <transfer, transfer_from, balance_of, allowance, approve, total_supply, mint, error_location>
#define macro ERC20__FUNCTION_SIGNATURE = takes(0) returns(0) {
   0x00 calldataload 224 shr // function signature
   dup1 0xa9059cbb eq <transfer> jumpi
   dup1 0x23b872dd eq <transfer_from> jumpi
   dup1 0x70a08231 eq <balance_of> jumpi     dup1 0xdd62ed3e eq <allowance> jumpi
   dup1 0x095ea7b3 eq <approve> jumpi    dup1 0x18160ddd eq <total_supply> jumpi
   dup1 0x40c10f19 eq <mint> jumpi
   UTILS__NOT_PAYABLE<error_location>()
   0x00 0x00 return
}

{{blog_divider}}

Setting up boilerplate contract code

Finally, we have enough to write the skeletal structure of our main function — the entry-point when our smart contract is called. We represent each method with a macro, which we will need to implement.

#define macro ERC20__MAIN = takes(0) returns(0) {


   ERC20__FUNCTION_SIGNATURE<
       transfer,
       transfer_from,
       balance_of,
       allowance,
       approve,
       total_supply,
       mint,
       throw_error
>()

   transfer:
       ERC20__TRANSFER<throw_error>()
   transfer_from:
       ERC20__TRANFSER_FROM<throw_error>()
   balance_of:
       ERC20__BALANCE_OF<throw_error>()
   allowance:
       ERC2O__ALLOWANCE<throw_error>()
   approve:
       ERC20__APPROVE<throw_error>()
   total_supply:
       ERC20__TOTAL_SUPPLY<throw_error>()
   mint:
       ERC20__MINT<throw_error>()
   throw_error:
       0x00 0x00 revert
}

…Tadaa.

Finally we’ve set up our pre-flight macros and boilerplate code and we’re ready to start implementing methods!But that’s enough for today.

In part 2 we’ll implement the ERC20 methods as glistening Huff macros, run some benchmarks against a Solidity implementation and question whether any of this was worth the effort.

Cheers,

Zac.

Click here for part 2

Read more
Aztec Network
Aztec Network
8 Oct
xx min read

Aztec: The Private World Computer

Privacy has emerged as a major driver for the crypto industry in 2025. We’ve seen the explosion of Zcash, the Ethereum Foundation’s refocusing of PSE, and the launch of Aztec’s testnet with over 24,000 validators powering the network. Many apps have also emerged to bring private transactions to Ethereum and Solana in various ways, and exciting technologies like ZKPassport that privately bring identity on-chain using Noir have become some of the most talked about developments for ushering in the next big movements to the space. 

Underpinning all of these developments is the emerging consensus that without privacy, blockchains will struggle to gain real-world adoption. 

Without privacy, institutions can’t bring assets on-chain in a compliant way or conduct complex swaps and trades without revealing their strategies. Without privacy, DeFi remains dominated and controlled by advanced traders who can see all upcoming transactions and manipulate the market. Without privacy, regular people will not want to move their lives on-chain for the entire world to see every detail about their every move. 

While there's been lots of talk about privacy, few can define it. In this piece we’ll outline the three pillars of privacy and gives you a framework for evaluating the privacy claims of any project. 

The Three Pillars of Privacy 

True privacy rests on three essential pillars: transaction privacy, identity privacy, and computational privacy. It is only when we have all three pillars that we see the emergence of a private world computer. 

Transaction: What is being sent?

Transaction privacy means that both inputs and outputs are not viewable by anyone other than the intended participants. Inputs include any asset, value, message, or function calldata that is being sent. Outputs include any state changes or transaction effects, or any transaction metadata caused by the transaction. Transaction privacy is often primarily achieved using a UTXO model (like Zcash or Aztec’s private state tree). If a project has only the option for this pillar, it can be said to be confidential, but not private. 

Identity: Who is involved?

Identity privacy means that the identities of those involved are not viewable by anyone other than the intended participants. This includes addresses or accounts and any information about the identity of the participants, such as tx.origin, msg.sender, or linking one’s private account to public accounts. Identity privacy can be achieved in several ways, including client-side proof generation that keeps all user info on the users’ devices. If a project has only the option for this pillar, it can be said to be anonymous, but not private. 

Computation: What happened? 

Computation privacy means that any activity that happens is not viewable by anyone other than the intended participants. This includes the contract code itself, function execution, contract address, and full callstack privacy. Additionally, any metadata generated by the transaction is able to be appropriately obfuscated (such as transaction effects, events are appropriately padded, inclusion block number are in appropriate sets). Callstack privacy includes which contracts you call, what functions in those contracts you’ve called, what the results of those functions were, any subsequent functions that will be called after, and what the inputs to the function were. A project must have the option for this pillar to do anything privately other than basic transactions. 

From private money to a private world computer 

Bitcoin ushered in a new paradigm of digital money. As a permissionless, peer-to-peer currency and store of value, it changed the way value could be sent around the world and who could participate. Ethereum expanded this vision to bring us the world computer, a decentralized, general-purpose blockchain with programmable smart contracts. 

Given the limitations of running a transparent blockchain that exposes all user activity, accounts, and assets, it was clear that adding the option to preserve privacy would unlock many benefits (and more closely resemble real cash). But this was a very challenging problem. Zcash was one of the first to extend Bitcoin’s functionality with optional privacy, unlocking a new privacy-preserving UTXO model for transacting privately. As we’ll see below, many of the current privacy-focused projects are working on similar kinds of private digital money for Ethereum or other chains. 

Now, Aztec is bringing us the final missing piece: a private world computer.

A private world computer is fully decentralized, programmable, and permissionless like Ethereum and has optional privacy at every level. In other words, Aztec is extending all the functionality of Ethereum with optional transaction, identity, and computational privacy. This is the only approach that enables fully compliant, decentralized applications to be built that preserve user privacy, a new design space that we see as ushering in the next Renaissance for the space. 

Where are we now? 

Private digital money

Private digital money emerges when you have the first two privacy pillars covered - transactions and identity - but you don’t have the third - computation. Almost all projects today that claim some level of privacy are working on private digital money. This includes everything from privacy pools on Ethereum and L2s to newly emerging payment L1s like Tempo and Arc that are developing various degrees of transaction privacy 

When it comes to digital money, privacy exists on a spectrum. If your identity is hidden but your transactions are visible, that's what we call anonymous. If your transactions are hidden but your identity is known, that's confidential. And when both your identity and transactions are protected, that's true privacy. Projects are working on many different approaches to implement this, from PSE to Payy using Noir, the zkDSL built to make it intuitive to build zk applications using familiar Rust-like syntax. 

The Private World Computer 

Private digital money is designed to make payments private, but any interaction with more complex smart contracts than a straightforward payment transaction is fully exposed. 

What if we also want to build decentralized private apps using smart contracts (usually multiple that talk to each other)? For this, you need all three privacy pillars: transaction, identity, and compute. 

If you have these three pillars covered and you have decentralization, you have built a private world computer. Without decentralization, you are vulnerable to censorship, privileged backdoors and inevitable centralized control that can compromise privacy guarantees. 

Aztec: the Private World Computer 

What exactly is a private world computer? A private world computer extends all the functionality of Ethereum with optional privacy at every level, so developers can easily control which aspects they want public or private and users can selectively disclose information. With Aztec, developers can build apps with optional transaction, identity, and compute privacy on a fully decentralized network. Below, we’ll break down the main components of a private world computer.

Private Smart Contracts 

A private world computer is powered by private smart contracts. Private smart contracts have fully optional privacy and also enable seamless public and private function interaction. 

vate smart contracts simply extend the functionality of regular smart contracts with added privacy. 

As a developer, you can easily designate which functions you want to keep private and which you want to make public. For example, a voting app might allow users to privately cast votes and publicly display the result. Private smart contracts can also interact privately with other smart contracts, without needing to make it public which contracts have interacted. 

Aztec’s Three Pillars of Privacy

Transaction: Aztec supports the optionality for fully private inputs, including messages, state, and function calldata. Private state is updated via a private UTXO state tree.

Identity: Using client-side proofs and function execution, Aztec can optionally keep all user info private, including tx.origin and msg.sender for transactions. 

Computation: The contract code itself, function execution, and call stack can all be kept private. This includes which contracts you call, what functions in those contracts you’ve called, what the results of those functions were, and what the inputs to the function were. 

Decentralization

A decentralized network must be made up of a permissionless network of operators who run the network and decide on upgrades. Aztec is run by a decentralized network of node operators who propose and attest to transactions. Rollup proofs on Aztec are also run by a decentralized prover network that can permissionlessly submit proofs and participate in block rewards. Finally, the Aztec network is governed by the sequencers, who propose, signal, vote, and execute network upgrades.

What Can You Build with a Private World Computer?

Private DeFi

A private world computer enables the creation of DeFi applications where accounts, transactions, order books, and swaps remain private. Users can protect their trading strategies and positions from public view, preventing front-running and maintaining competitive advantages. Additionally, users can bridge privately into cross-chain DeFi applications, allowing them to participate in DeFi across multiple blockchains while keeping their identity private despite being on an existing transparent blockchain.

Private Dark Pools

This technology makes it possible to bring institutional trading activity on-chain while maintaining the privacy that traditional finance requires. Institutions can privately trade with other institutions globally, without having to touch public markets, enjoying the benefits of blockchain technology such as fast settlement and reduced counterparty risk, without exposing their trading intentions or volumes to the broader market.

Private RWAs & Stablecoins

Organizations can bring client accounts and assets on-chain while maintaining full compliance. This infrastructure protects on-chain asset trading and settlement strategies, ensuring that sophisticated financial operations remain private. A private world computer also supports private stablecoin issuance and redemption, allowing financial institutions to manage digital currency operations without revealing sensitive business information.

Compliant Apps

Users have granular control over their privacy settings, allowing them to fine-tune privacy levels for their on-chain identity according to their specific needs. The system enables selective disclosure of on-chain activity, meaning users can choose to reveal certain transactions or holdings to regulators, auditors, or business partners while keeping other information private, meeting compliance requirements.

Let’s build

The shift from transparent blockchains to privacy-preserving infrastructure is the foundation for bringing the next billion users on-chain. Whether you're a developer building the future of private DeFi, an institution exploring compliant on-chain solutions, or simply someone who believes privacy is a fundamental right, now is the time to get involved.

Follow Aztec on X to stay updated on the latest developments in private smart contracts and decentralized privacy technology. Ready to contribute to the network? Run a node and help power the private world computer. 

The next Renaissance is here, and it’s being powered by the private world computer.

Aztec Network
Aztec Network
24 Sep
xx min read

Testnet Retro - 2.0.3 Network Upgrade

Special thanks to Santiago Palladino, Phil Windle, Alex Gherghisan, and Mitch Tracy for technical updates and review.

On September 17th, 2025, a new network upgrade was deployed, making Aztec more secure and flexible for home stakers. This upgrade, shipped with all the features needed for a fully decentralized network launch, includes a completely redesigned slashing system that allows inactive or malicious operators to be removed, and does not penalize home stakers for short outages. 

With over 23,000 operators running validators across 6 continents (in a variety of conditions), it is critical not to penalize nodes that temporarily drop due to internet connectivity issues. This is because users of the network are also found across the globe, some of whom might have older phones. A significant effort was put into shipping a low-memory proving mode that allows older mobile devices to send transactions and use privacy-preserving apps. 

The network was successfully deployed, and all active validators on the old testnet were added to the queue of the new testnet. This manual migration was only necessary because major upgrades to the governance contracts had gone in since the last testnet was deployed. The new testnet started producing blocks after the queue started to be “flushed,” moving validators into the rollup. Because the network is fully decentralized, the initial flush could have been called by anyone. The network produced ~2k blocks before an invalid block made it to the chain and temporarily stalled block production. Block production is now restored and the network is healthy. This post explains what caused the issue and provides an update on the current status of the network. 

Note: if you are a network operator, you must upgrade to version 2.0.3 and restart your node to participate in the latest testnet. If you want to run a node, it’s easy to get started.

What’s included in the upgrade? 

This upgrade was a team-wide effort that optimized performance and implemented all the mechanisms needed to launch Aztec as a fully decentralized network from day 1. 

Feature highlights include: 

  • Improved node stability: The Aztec node software is now far more stable. Users will see far fewer crashes and increased performance in terms of attestations and blocks produced. This translates into a far better experience using testnet, as transactions get included much faster.
  • Boneh–Lynn–Shacham (BLS) keys: When a validator registers on the rollup, they also provide keys that allow BLS signature aggregation. This unlocks future optimizations where signatures can be combined via p2p communication, then verified on Ethereum, while proving that the signatures come from block proposers.
  • Low-memory proving mode: The client-side proving requirements have dropped dramatically from 3.7GB to 1.3GB through a new low-memory proving mode, enabling older mobile devices to send Aztec transactions and use apps like zkPassport. 
  • AVM performance: The Aztec Virtual Machine (AVM) performance has seen major improvements with constraint coverage jumping from 0% to approximately 90-95%, providing far more secure AVM proving and more realistic proving performance numbers from provers. 
  • Flexible key management: The system now supports flexible key management through keystores, multi-EOA support, and remote signers, eliminating the need to pass private keys through environment variables and representing a significant step toward institutional readiness. 
  • Redesigned slashing: Slashing has been redesigned to provide much better consensus guarantees. Further, the new configuration allows nodes not to penalize home stakers for short outages, such as 20-minute interruptions. 
  • Slashing Vetoer: The Slasher contract now has an explicit vetoer: an address that can prevent slashing. At Mainnet, the initial vetoer will be operated by an independent group of security researchers who will also provide security assessments on upgrades. This acts as a failsafe in the event that nodes are erroneously trying to slash other nodes due to a bug.

With these updates in place, we’re ready to test a feature-complete network. 

What happened after deployment? 

As mentioned above, block production started when someone called the flush function and a minimum number of operators from the queue were let into the validator set. 

Shortly thereafter, while testing the network, a member of the Aztec Labs team spun up a “bad” sequencer that produced an invalid block proposal. Specifically, one of the state trees in the proposal was tampered with. 

Initial block production 

The expectation was that this would be detected immediately and the block rejected. Instead, a bug was discovered in the validator code where the invalid block proposal wasn't checked thoroughly enough. In effect, the proposal got enough attestations, so it was posted to the rollup. Due to extra checks in the nodes, when the nodes pulled the invalid block from Ethereum, they detected the tampered tree and refused to sync it. This is a good outcome as it prevented the attack. Additionally, prover nodes refused to prove the epoch containing the invalid block. This allowed the rollup to prune the entire bad epoch away. After the prune, the invalid state was reset to the last known good block.

Block production stalled

The prune revealed another, smaller bug, where, after a failed block sync, a prune does not get processed correctly, requiring a node restart to clear up. This led to a 90-minute outage from the moment the block proposal was posted until the testnet recovered. The time was equally split between waiting for pruning to happen and for the nodes to restart in order to process the prune.

The Fix

Validators were correctly re-executing all transactions in the block proposals and verifying that the world state root matched the one in the block proposal, but they failed to check that intermediate tree roots, which are included in the proposal and posted to the rollup contract on L1, were also correct. The attack tweaked one of these intermediate roots while proposing a correct world state root, so it went unnoticed by the attestors. 

As mentioned above, even though the block made it through the initial attestation and was posted to L1, the invalid block was caught by the validators, and the entire epoch was never proven as provers refused to generate a proof for the inconsistent state. 

A fix was pushed that resolved this issue and ensured that invalid block proposals would be caught and rejected. A second fix was pushed that ensures inconsistent state is removed from the uncommitted cache of the world state.

Block production restored

What’s Next

Block production is currently running smoothly, and the network health has been restored. 

Operators who had previously upgraded to version 2.0.3 will need to restart their nodes. Any operator who has not upgraded to 2.0.3 should do so immediately. 

Attestation and Block Production rate on the new rollup

Slashing has also been functioning as expected. Below you can see the slashing signals for each round. A single signal can contain votes for multiple validators, but a validator's attester needs to receive 65 votes to be slashed.

Votes on slashing signals

Join us this Thursday, September 25, 2025, at 4 PM CET on the Discord Town Hall to hear more about the 2.0.3 upgrade. To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Noir
Noir
18 Sep
xx min read

Just write “if”: Why Payy left Halo2 for Noir

The TL;DR:

Payy, a privacy-focused payment network, just rewrote its entire ZK architecture from Halo2 to Noir while keeping its network live, funds safe, and users happy. 

Code that took months to write now takes weeks (with MVPs built in as little as 30 minutes). Payy’s codebase shrank from thousands of lines to 250, and now their entire engineering team can actually work on its privacy infra. 

This is the story of how they transformed their ZK ecosystem from one bottlenecked by a single developer to a system their entire team can modify and maintain.

Starting with Halo2

Eighteen months ago, Payy faced a deceptively simple requirement: build a privacy-preserving payment network that actually works on phones. That requires client-side proving.

"Anyone who tells you they can give you privacy without the proof being on the phone is lying to you," Calum Moore - Payy's Technical Lead - states bluntly.

To make a private, mobile network work, they needed:

  • Mobile proof generation with sub-second performance
  • Minimal proof sizes for transmission over weak mobile signals
  • Low memory footprint for on-device proving
  • Ethereum verifier for on-chain settlement

To start, the team evaluated available ZK stacks through their zkbench framework:

STARKs (e.g., RISC Zero): Memory requirements made them a non-starter on mobile. Large proof sizes are unsuitable for mobile data transmission.

Circom with Groth16: Required trusted setup ceremonies for each circuit update. It had “abstracted a bit too early” and, as a result, is not high-level enough to develop comfortably, but not low-level enough for controls and optimizations, said Calum.

Halo2: Selected based on existing production deployments (ZCash, Scroll), small proof sizes, and an existing Ethereum verifier. As Calum admitted with the wisdom of hindsight: “Back a year and a half ago, there weren’t any other real options.”

Bus factor = 1 😳

Halo2 delivered on its promises: Payy successfully launched its network. But cracks started showing almost immediately.

First, they had to write their own chips from scratch. Then came the real fun: if statements.

"With Halo2, I'm building a chip, I'm passing this chip in... It's basically a container chip, so you'd set the value to zero or one depending on which way you want it to go. And, you'd zero out the previous value if you didn't want it to make a difference to the calculation," Calum explained, “when I’m writing in Noir, I just write ‘if’. "

With Halo2, writing an if statement (programming 101) required building custom chip infra. 

Binary decomposition, another fundamental operation for rollups, meant more custom chips. The Halo2 implementation quickly grew to thousands of lines of incomprehensible code.

And only Calum could touch any of it.

The Bottleneck

"It became this black box that no one could touch, no one could reason about, no one could verify," he recalls. "Obviously, we had it audited, and we were confident in that. But any changes could only be done by me, could only be verified by me or an auditor."

In engineering terms, this is called a bus factor of one: if Calum got hit by a bus (or took a vacation to Argentina), Payy's entire proving system would be frozen. "Those circuits are open source," Calum notes wryly, "but who's gonna be able to read the Halo2 circuits? Nobody."

Evaluating Noir: One day, in Argentina…

During a launch event in Argentina, "I was like, oh, I'll check out Noir again. See how it's going," Calum remembers. He'd been tracking Noir's progress for months, occasionally testing it out, waiting for it to be reliable.

"I wrote basically our entire client-side proof in about half an hour in Noir. And it probably took me - I don't know, three weeks to write that proof originally in Halo2."

Calum recreated Payy's client-side proof in Noir in 30 minutes. And when he tested the proving speed, without any optimization, they were seeing 2x speed improvements.

"I kind of internally… didn't want to tell my cofounder Sid that I'd already made my decision to move to Noir," Calum admits. "I hadn't broken it to him yet because it's hard to justify rewriting your proof system when you have a deployed network with a bunch of money already on the network and a bunch of users."

Rebuilding (Ship of Theseus-ing) Payy

Convincing a team to rewrite the core of a live financial network takes some evidence. The technical evaluation of Noir revealed improvements across every metric:

Proof Generation Time: Sub-0.5 second proof generation on iPhones. "We're obsessive about performance," Calum notes (they’re confident they can push it even further).

Code Complexity: Their entire ZK implementation compressed from thousands of lines of Halo2 to just 250 lines of Noir code. "With rollups, the logic isn't complex—it's more about the preciseness of the logic," Calum explains.

Composability: In Halo2, proof aggregation required hardwiring specific verifiers for each proof type. Noir offers a general-purpose verifier that accepts any proof of consistent size.

"We can have 100 different proving systems, which are hyper-efficient for the kind of application that we're doing," Calum explains. "Have them all aggregated by the same aggregation proof, and reason about whatever needs to be."

Migration Time

Initially, the goal was to "completely mirror our Halo2 proofs": no new features. This conservative approach meant they could verify correctness while maintaining a live network.

The migration preserved Payy's production architecture:

  • Rust core (According to Calum, "Writing a financial application in JavaScript is borderline irresponsible")
  • Three-proof system: client-side proof plus two aggregators  
  • Sparse Merkle tree with Poseidon hashing for state management

When things are transparent, they’re secure

"If you have your proofs in Noir, any person who understands even a little bit about logic or computers can go in and say, 'okay, I can kinda see what's happening here'," Calum notes.

The audit process completely transformed. With Halo2: "The auditors that are available to audit Halo2 are few and far between."

With Noir: "You could have an auditor that had no Noir experience do at least a 95% job."

Why? Most audit issues are logic errors, not ZK-specific bugs. When auditors can read your code, they find real problems instead of getting lost in implementation details.

Code Comparison

Halo2: Binary decomposition

  • Write a custom chip for binary decomposition
  • Implement constraint system manually
  • Handle grid placement and cell references
  • Manage witness generation separately
  • Debug at the circuit level when something goes wrong

Payy’s previous 383 line implementation of binary decomposition can be viewed here (pkg/zk-circuits/src/chips/binary_decomposition.rs).

Payy’s previous binary decomposition implementation

Meanwhile, binary decomposition is handled in Noir with the following single line.

pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N]

(Source)

What's Next

With Noir's composable proof system, Payy can now build specialized provers for different operations, each optimized for its specific task.

"If statements are horrendous in SNARKs because you pay the cost of the if statement regardless of its run," Calum explains. But with Noir's approach, "you can split your application logic into separate proofs, and run whichever proof is for the specific application you're looking for."

Instead of one monolithic proof trying to handle every case, you can have specialized proofs, each perfect for its purpose.

The Bottom Line

"I fell a little bit in love with Halo2," Calum admits, "maybe it's Stockholm syndrome where you're like, you know, it's a love-hate relationship, and it's really hard. But at the same time, when you get a breakthrough with it, you're like, yes, I feel really good because I'm basically writing assembly-level ZK proofs."

“But now? I just write ‘if’.”

Technical Note: While "migrating from Halo2 to Noir" is shorthand that works for this article, technically Halo2 is an integrated proving system where circuits must be written directly in Rust using its constraint APIs, while Noir is a high-level language that compiles to an intermediate representation and can use various proving backends. Payy specifically moved from writing circuits in Halo2's low-level constraint system to writing them in Noir's high-level language, with Barretenberg (UltraHonk) as their proving backend.

Both tools ultimately enable developers to write circuits and generate proofs, but Noir's modular architecture separates circuit logic from the proving system - which is what made Payy's circuits so much more accessible to their entire team, and now allows them to swap out their proving system with minimal effort as proving systems improve.

Payy's code is open source and available for developers looking to learn from their implementation.

Aztec Network
Aztec Network
4 Sep
xx min read

A New Brand for a New Era of Aztec

After eight years of solving impossible problems, the next renaissance is here. 

We’re at a major inflection point, with both our tech and our builder community going through growth spurts. The purpose of this rebrand is simple: to draw attention to our full-stack privacy-native network and to elevate the rich community of builders who are creating a thriving ecosystem around it. 

For eight years, we’ve been obsessed with solving impossible challenges. We invented new cryptography (Plonk), created an intuitive programming language (Noir), and built the first decentralized network on Ethereum where privacy is native rather than an afterthought. 

It wasn't easy. But now, we're finally bringing that powerful network to life. Testnet is live with thousands of active users and projects that were technically impossible before Aztec.

Our community evolution mirrors our technical progress. What started as an intentionally small, highly engaged group of cracked developers is now welcoming waves of developers eager to build applications that mainstream users actually want and need.

Behind the Brand: A New Mental Model

A brand is more than aesthetics—it's a mental model that makes Aztec's spirit tangible. 

Our Mission: Start a Renaissance

Renaissance means "rebirth"—and that's exactly what happens when developers gain access to privacy-first infrastructure. We're witnessing the emergence of entirely new application categories, business models, and user experiences.

The faces of this renaissance are the builders we serve: the entrepreneurs building privacy-preserving DeFi, the activists building identity systems that protect user privacy, the enterprise architects tokenizing real-world assets, and the game developers creating experiences with hidden information.

Values Driving the Network

This next renaissance isn't just about technology—it's about the ethos behind the build. These aren't just our values. They're the shared DNA of every builder pushing the boundaries of what's possible on Aztec.

Agency: It’s what everyone deserves, and very few truly have: the ability to choose and take action for ourselves. On the Aztec Network, agency is native

Genius: That rare cocktail of existential thirst, extraordinary brilliance, and mind-bending creation. It’s fire that fuels our great leaps forward. 

Integrity: It’s the respect and compassion we show each other. Our commitment to attacking the hardest problems first, and the excellence we demand of any solution. 

Obsession: That highly concentrated insanity, extreme doggedness, and insatiable devotion that makes us tick. We believe in a different future—and we can make it happen, together. 

Visualizing the Next Renaissance

Just as our technology bridges different eras of cryptographic innovation, our new visual identity draws from multiple periods of human creativity and technological advancement. 

The Wordmark: Permissionless Party 

Our new wordmark embodies the diversity of our community and the permissionless nature of our network. Each letter was custom-drawn to reflect different pivotal moments in human communication and technological progress.

  • The A channels the bold architecture of Renaissance calligraphy—when new printing technologies democratized knowledge. 
  • The Z strides confidently into the digital age with clean, screen-optimized serifs. 
  • The T reaches back to antiquity, imagined as carved stone that bridges ancient and modern. 
  • The E embraces the dot-matrix aesthetic of early computing—when machines first began talking to each other. 
  • And the C fuses Renaissance geometric principles with contemporary precision.

Together, these letters tell the story of human innovation: each era building on the last, each breakthrough enabling the next renaissance. And now, we're building the infrastructure for the one that's coming.

The Icon: Layers of the Next Renaissance

We evolved our original icon to reflect this new chapter while honoring our foundation. The layered diamond structure tells the story:

  • Innermost layer: Sensitive data at the core
  • Black privacy layer: The network's native protection
  • Open third layer: Our permissionless builder community
  • Outermost layer: Mainstream adoption and real-world transformation

The architecture echoes a central plaza—the Roman forum, the Greek agora, the English commons, the American town square—places where people gather, exchange ideas, build relationships, and shape culture. It's a fitting symbol for the infrastructure enabling the next leap in human coordination and creativity.

Imagery: Global Genius 

From the Mughal and Edo periods to the Flemish and Italian Renaissance, our brand imagery draws from different cultures and eras of extraordinary human flourishing—periods when science, commerce, culture and technology converged to create unprecedented leaps forward. These visuals reflect both the universal nature of the Renaissance and the global reach of our network. 

But we're not just celebrating the past —we're creating the future: the infrastructure for humanity's next great creative and technological awakening, powered by privacy-native blockchain technology.

You’re Invited 

Join us to ask questions, learn more and dive into the lore.

Join Our Discord Town Hall. September 4th at 8 AM PT, then every Thursday at 7 AM PT. Come hear directly from our team, ask questions, and connect with other builders who are shaping the future of privacy-first applications.

Take your stance on privacy. Visit the privacy glyph generator to create your custom profile pic and build this new world with us.

Stay Connected. Visit the new website and to stay up-to-date on all things Noir and Aztec, make sure you’re following along on X.

The next renaissance is what you build on Aztec—and we can't wait to see what you'll create.