Noir
18 Sep
## min read

Just write “if”: Why Payy left Halo2 for Noir

This is the story of how Payy transformed their ZK ecosystem from one bottlenecked by a single developer to a system their entire team can modify and maintain.

Share
Written by
Jake Schaeffer
Edited by
Kelsey Ruiz

The TL;DR:

Payy, a privacy-focused payment network, just rewrote its entire ZK architecture from Halo2 to Noir while keeping its network live, funds safe, and users happy. 

Code that took months to write now takes weeks (with MVPs built in as little as 30 minutes). Payy’s codebase shrank from thousands of lines to 250, and now their entire engineering team can actually work on its privacy infra. 

This is the story of how they transformed their ZK ecosystem from one bottlenecked by a single developer to a system their entire team can modify and maintain.

Starting with Halo2

Eighteen months ago, Payy faced a deceptively simple requirement: build a privacy-preserving payment network that actually works on phones. That requires client-side proving.

"Anyone who tells you they can give you privacy without the proof being on the phone is lying to you," Calum Moore - Payy's Technical Lead - states bluntly.

To make a private, mobile network work, they needed:

  • Mobile proof generation with sub-second performance
  • Minimal proof sizes for transmission over weak mobile signals
  • Low memory footprint for on-device proving
  • Ethereum verifier for on-chain settlement

To start, the team evaluated available ZK stacks through their zkbench framework:

STARKs (e.g., RISC Zero): Memory requirements made them a non-starter on mobile. Large proof sizes are unsuitable for mobile data transmission.

Circom with Groth16: Required trusted setup ceremonies for each circuit update. It had “abstracted a bit too early” and, as a result, is not high-level enough to develop comfortably, but not low-level enough for controls and optimizations, said Calum.

Halo2: Selected based on existing production deployments (ZCash, Scroll), small proof sizes, and an existing Ethereum verifier. As Calum admitted with the wisdom of hindsight: “Back a year and a half ago, there weren’t any other real options.”

Bus factor = 1 😳

Halo2 delivered on its promises: Payy successfully launched its network. But cracks started showing almost immediately.

First, they had to write their own chips from scratch. Then came the real fun: if statements.

"With Halo2, I'm building a chip, I'm passing this chip in... It's basically a container chip, so you'd set the value to zero or one depending on which way you want it to go. And, you'd zero out the previous value if you didn't want it to make a difference to the calculation," Calum explained, “when I’m writing in Noir, I just write ‘if’. "

With Halo2, writing an if statement (programming 101) required building custom chip infra. 

Binary decomposition, another fundamental operation for rollups, meant more custom chips. The Halo2 implementation quickly grew to thousands of lines of incomprehensible code.

And only Calum could touch any of it.

The Bottleneck

"It became this black box that no one could touch, no one could reason about, no one could verify," he recalls. "Obviously, we had it audited, and we were confident in that. But any changes could only be done by me, could only be verified by me or an auditor."

In engineering terms, this is called a bus factor of one: if Calum got hit by a bus (or took a vacation to Argentina), Payy's entire proving system would be frozen. "Those circuits are open source," Calum notes wryly, "but who's gonna be able to read the Halo2 circuits? Nobody."

Evaluating Noir: One day, in Argentina…

During a launch event in Argentina, "I was like, oh, I'll check out Noir again. See how it's going," Calum remembers. He'd been tracking Noir's progress for months, occasionally testing it out, waiting for it to be reliable.

"I wrote basically our entire client-side proof in about half an hour in Noir. And it probably took me - I don't know, three weeks to write that proof originally in Halo2."

Calum recreated Payy's client-side proof in Noir in 30 minutes. And when he tested the proving speed, without any optimization, they were seeing 2x speed improvements.

"I kind of internally… didn't want to tell my cofounder Sid that I'd already made my decision to move to Noir," Calum admits. "I hadn't broken it to him yet because it's hard to justify rewriting your proof system when you have a deployed network with a bunch of money already on the network and a bunch of users."

Rebuilding (Ship of Theseus-ing) Payy

Convincing a team to rewrite the core of a live financial network takes some evidence. The technical evaluation of Noir revealed improvements across every metric:

Proof Generation Time: Sub-0.5 second proof generation on iPhones. "We're obsessive about performance," Calum notes (they’re confident they can push it even further).

Code Complexity: Their entire ZK implementation compressed from thousands of lines of Halo2 to just 250 lines of Noir code. "With rollups, the logic isn't complex—it's more about the preciseness of the logic," Calum explains.

Composability: In Halo2, proof aggregation required hardwiring specific verifiers for each proof type. Noir offers a general-purpose verifier that accepts any proof of consistent size.

"We can have 100 different proving systems, which are hyper-efficient for the kind of application that we're doing," Calum explains. "Have them all aggregated by the same aggregation proof, and reason about whatever needs to be."

Migration Time

Initially, the goal was to "completely mirror our Halo2 proofs": no new features. This conservative approach meant they could verify correctness while maintaining a live network.

The migration preserved Payy's production architecture:

  • Rust core (According to Calum, "Writing a financial application in JavaScript is borderline irresponsible")
  • Three-proof system: client-side proof plus two aggregators  
  • Sparse Merkle tree with Poseidon hashing for state management

When things are transparent, they’re secure

"If you have your proofs in Noir, any person who understands even a little bit about logic or computers can go in and say, 'okay, I can kinda see what's happening here'," Calum notes.

The audit process completely transformed. With Halo2: "The auditors that are available to audit Halo2 are few and far between."

With Noir: "You could have an auditor that had no Noir experience do at least a 95% job."

Why? Most audit issues are logic errors, not ZK-specific bugs. When auditors can read your code, they find real problems instead of getting lost in implementation details.

Code Comparison

Halo2: Binary decomposition

  • Write a custom chip for binary decomposition
  • Implement constraint system manually
  • Handle grid placement and cell references
  • Manage witness generation separately
  • Debug at the circuit level when something goes wrong

Payy’s previous 383 line implementation of binary decomposition can be viewed here (pkg/zk-circuits/src/chips/binary_decomposition.rs).

Payy’s previous binary decomposition implementation

Meanwhile, binary decomposition is handled in Noir with the following single line.

pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N]

(Source)

What's Next

With Noir's composable proof system, Payy can now build specialized provers for different operations, each optimized for its specific task.

"If statements are horrendous in SNARKs because you pay the cost of the if statement regardless of its run," Calum explains. But with Noir's approach, "you can split your application logic into separate proofs, and run whichever proof is for the specific application you're looking for."

Instead of one monolithic proof trying to handle every case, you can have specialized proofs, each perfect for its purpose.

The Bottom Line

"I fell a little bit in love with Halo2," Calum admits, "maybe it's Stockholm syndrome where you're like, you know, it's a love-hate relationship, and it's really hard. But at the same time, when you get a breakthrough with it, you're like, yes, I feel really good because I'm basically writing assembly-level ZK proofs."

“But now? I just write ‘if’.”

Technical Note: While "migrating from Halo2 to Noir" is shorthand that works for this article, technically Halo2 is an integrated proving system where circuits must be written directly in Rust using its constraint APIs, while Noir is a high-level language that compiles to an intermediate representation and can use various proving backends. Payy specifically moved from writing circuits in Halo2's low-level constraint system to writing them in Noir's high-level language, with Barretenberg (UltraHonk) as their proving backend.

Both tools ultimately enable developers to write circuits and generate proofs, but Noir's modular architecture separates circuit logic from the proving system - which is what made Payy's circuits so much more accessible to their entire team, and now allows them to swap out their proving system with minimal effort as proving systems improve.

Payy's code is open source and available for developers looking to learn from their implementation.

Read more
Aztec Network
Aztec Network
13 Nov
xx min read

The ticker is $AZTEC

We invented the math. We wrote the language. Proved the concept and now, we’re opening registration and bidding for the $AZTEC token today, starting at 3 pm CET. 

The community-first distribution offers a starting floor price based on a $350 million fully diluted valuation (FDV), representing an approximate 75% discount to the implied network valuation (based on the latest valuation from Aztec Labs’ equity financings). The auction also features per-user participation caps to give community members genuine, bid-clearing opportunities to participate daily through the entirety of the auction. 

How to Check Eligibility and Submit Your Bid 

The token auction portal is live at: sale.aztec.network

  • This is the only valid link to the $AZTEC token auction site. Be cautious of phishing scams. No one from the Aztec team will ever contact you directly for seed phrase or private keys. 
  • Visit the site to verify your eligibility and mint a soul-bound NFT that confirms your participation rights. 
  • We have incorporated zero-knowledge proofs into the sale smart contracts by using ZKPassport's Noir circuits to ensure compliant sanctions checks without risking the privacy of our users. 
  • Registration and bidding for early contributors start today, November 13th, at 3 PM CET, with early contributors receiving one day of exclusive access before bidding opens to the general public.
  • The public auction will run from December 2nd, 2025, to December 6th, 2025, at which point tokens can be withdrawn and staked.

Why Are We Doing This? 

We’ve taken the community access that made the 2017 ICO era great and made it even better. 

For the past several months, we've worked closely with Uniswap Labs as core contributors on the CCA protocol, a set of smart contracts that challenge traditional token distribution mechanisms to prioritize fair access, permissionless, on-chain access to community members and the general public pre-launch. This means that on day 1 of the unlock, 100% of the community's $AZTEC tokens will be unlocked.

This model is values-aligned with our Core team and addresses the current challenges in token distribution, where retail participants often face unfair disadvantages against whales and institutions that hold large amounts of money. 

Early contributors and long-standing community members, including genesis sequencers, OG Aztec Connect users, network operators, and community members, can start bidding today, ahead of the public auction, giving those who are whitelisted a head start and early advantage for competitive pricing. Community members can participate by visiting the token sale site to verify eligibility and mint a soul-bound NFT that confirms participation rights. 

To read more about Aztec’s fair-access token sale, visit the economic and technical whitepapers and the token regulatory report.

Discount Price Disclaimer: Any reference to a prior valuation or percentage discount is provided solely to inform potential purchasers of how the initial floor price for the token sale was calculated. Equity financing valuations were determined under specific circumstances that are not comparable to this offering. They do not represent, and should not be relied upon as, the current or future market value of the tokens, nor as an indication of potential returns. The price of tokens may fluctuate substantially, the token may lose its value in part or in full, and purchasers should make independent assessments without reliance on past valuations. No representation or warranty is made that any purchaser will achieve profits or recover the purchase price.

Information for Persons in the UK: This communication is directed only at persons outside the UK. Persons in the UK are not permitted to participate in the token sale and must not act upon this communication.

MiCA Disclaimer: Any crypto-asset marketing communications made from this account have not been reviewed or approved by any competent authority in any Member State of the European Union. Aztec Foundation as the offeror of the crypto-asset is solely responsible for the content of such crypto-asset marketing communications. The Aztec MiCA white paper has been published and is available here. The Aztec Foundation can be contacted at hello@aztec.foundation or +41 41 710 16 70. For more information about the Aztec Foundation, visit https://aztec.foundation.

Aztec Network
Aztec Network
28 Oct
xx min read

Your Favorite DeFi Apps, Now With Privacy

Every time you swap tokens on Uniswap, deposit into a yield vault, or vote in a DAO, you're broadcasting your moves to the world. Anyone can see what you own, where you trade, how much you invest, and when you move your money.

Tracking and analysis tools like Chainalysis and TRM are already extremely advanced, and will only grow stronger with advances in AI in the coming years. The implications of this are that the ‘pseudo-anonymous’ wallets on Ethereum are quickly becoming linked to real-world identities. This is concerning for protecting your personal privacy, but it’s also a major blocker in bringing institutions on-chain with full compliance for their users. 

Until now, your only option was to abandon your favorite apps and move to specialized privacy-focused apps or chains with varying degrees of privacy. You'd lose access to the DeFi ecosystem as you know it now, the liquidity you depend on, and the community you're part of. 

What if you could keep using Uniswap, Aave, Yearn, and every other app you love, but with your identity staying private? No switching chains. Just an incognito mode for your existing on-chain life? 

If you’ve been following Aztec for a while, you would be right to think about Aztec Connect here, which was hugely popular with $17M TVL and over 100,000 active wallets, but was sunset in 2024 to focus on bringing a general-purpose privacy network to life. 

Read on to learn how you’ll be able to import privacy to any L2, using one of the many privacy-focused bridges that are already built. 

The Aztec Network  

Aztec is a fully decentralized, privacy-preserving L2 on Ethereum. You can think of Aztec as a private world computer with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

On Aztec, every wallet is a smart contract that gives users complete control over which aspects they want to make public or keep private. 

Aztec is currently in Testnet, but will have multiple privacy-preserving bridges live for its mainnet launch, unlocking a myriad of privacy preserving features.

Bringing Privacy to You

Now, several bridges, including Wormhole, TRAIN, and Substance, are connecting Aztec to other chains, adding a privacy layer to the L2s you already use. Think of it as a secure tunnel between you and any DeFi app on Ethereum, Arbitrum, Base, Optimism, or other major chains.

Here's what changes: You can now use any DeFi protocol without revealing your identity. Furthermore, you can also unlock brand new features that take advantage of Aztec’s private smart contracts, like private DAO voting or private compliance checks. 

Here's what you can do:

  • Use DeFi without revealing your portfolio: trade on Uniswap or deposit into Yearn without broadcasting your strategy to the world
  • Donate to causes without being tracked: support projects on Base without linking donations to your identity
  • Vote in DAOs without others seeing your choices: participate in governance on Arbitrum while keeping your votes private
  • Prove you're legitimate without doxxing yourself: pass compliance checks or prove asset ownership without revealing which specific assets you hold
  • Access exclusive perks without revealing which NFTs you own: unlock token-gated content on Optimism without showing your entire collection

The apps stay where they are. Your liquidity stays where it is. Your community stays where it is. You just get a privacy upgrade.

How It Actually Works 

Let's follow Alice through a real example.

Alice wants to invest $1,000 USDC into a yield vault on Arbitrum without revealing her identity. 

Step 1: Alice Sends Funds Through Aztec

Alice moves her funds into Aztec's privacy layer. This could be done in one click directly in the app that she’s already using if the app has integrated one of the bridges. Think of this like dropping a sealed envelope into a secure mailbox. The funds enter a private space where transactions can't be tracked back to her wallet.

Step 2: The Funds Arrive at the DeFi Vault

Aztec routes Alice's funds to the Yearn vault on Arbitrum. The vault sees a deposit and issues yield-earning tokens. But there's no way to trace those tokens back to Alice's original wallet. Others can see someone made a deposit, but they have no idea who.

Step 3: Alice Gets Her Tokens Back Privately

The yield tokens arrive in Alice's private Aztec wallet. She can hold them, trade them privately, or eventually withdraw them, without anyone connecting the dots.

Step 4: Alice Earns Yield With Complete Privacy

Alice is earning yield on Arbitrum using the exact same vault as everyone else. But while other users broadcast their entire investment strategy, Alice's moves remain private. 

The difference looks like this:

Without privacy: "Wallet 0x742d...89ab deposited $5,000 into Yearn vault at 2:47 PM"

With Aztec privacy: "Someone deposited funds into Yearn vault" (but who? from where? how much? unknowable).

In the future, we expect apps to directly integrate Aztec, making this experience seamless for you as a user. 

The Developers Behind the Bridges 

While Aztec is still in Testnet, multiple teams are already building bridges right now in preparation for the mainnet launch.

Projects like Substance Labs, Train, and Wormhole are creating connections between Aztec and major chains like Optimism, Unichain, Solana, and Aptos. This means you'll soon have private access to DeFi across nearly every major ecosystem.

Aztec has also launched a dedicated cross-chain catalyst program to support developers with grants to build additional bridges and apps. 

Unifying Liquidity Across Ethereum L2s

L2s have sometimes received criticism for fragmenting liquidity across chains. Aztec is taking a different approach. Instead, Aztec is bringing privacy to the liquidity that already exists. Your funds stay on Arbitrum, Optimism, Base, wherever the deepest pools and best apps already live. Aztec doesn't compete for liquidity, it adds privacy to existing liquidity.

You can access Uniswap's billions in trading volume. You can tap into Aave's massive lending pools. You can deposit into Yearn's established vaults, all without moving liquidity away from where it's most useful.

The Future of Private DeFi

We’re rolling out a new approach to how we think about L2s on Ethereum. Rather than forcing users to choose between privacy and access to the best DeFi applications, we’re making privacy a feature you can add to any protocol you're already using. As more bridges go live and applications integrate Aztec directly, using DeFi privately will become as simple as clicking a button—no technical knowledge required, no compromise on the apps and liquidity you depend on.

While Aztec is currently in testnet, the infrastructure is rapidly taking shape. With multiple bridge providers building connections to major chains and a dedicated catalyst program supporting developers, the path to mainnet is clear. Soon, you'll be able to protect your privacy while still participating fully in the Ethereum ecosystem. 

If you’re a developer and want a full technical breakdown, check out this post. To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Aztec Network
Aztec Network
22 Oct
xx min read

Bringing Private Over-The-Counter (OTC) Swaps to Crypto

Transparent OTC Trades Are Holding the Industry Back

OTC trading is fundamental to how crypto markets function. It enables better price negotiations than what you'll find on public order books and facilitates trading of illiquid assets that barely exist on exchanges. Without OTC markets, institutional crypto trading would be nearly impossible. But here's the massive problem: every single OTC transaction leaves a permanent, public trace. 

Let's say you're a fund manager who needs to sell 1,000 BTC for USDC on Base. In a traditional OTC trade, your Bitcoin leaves your wallet and becomes visible to everyone on Bitcoin's blockchain. Through cross-chain settlement, USDC then arrives in your Base wallet, which is also visible to everyone on Base's blockchain. 

At this point, block explorers and analytics firms can connect these transactions through pattern analysis. As a result, your trading patterns, position sizes, and timing become public data, exposing your entire strategy.

This isn't just about privacy; transparent OTC creates serious operational and strategic risks. These same concerns have moved a significant portion of traditional markets to private off-exchange trades. 

Why Traditional Finance Moved to Private Markets

In TradFi, institutions don't execute large trades on public order books for many reasons. In fact, ~13% of all stocks in the US are now traded in dark pools, and more than 50% of trades are now off-exchange. 

They use private networks, dark pools, and OTC desks specifically because:

  • Strategy Protection: Your competitors can't front-run your moves
  • Better Execution: No market impact from revealing large positions
  • Regulatory Compliance: Meet reporting requirements without public disclosure
  • Operational Security: Protect proprietary trading algorithms and relationships

While OTC trading is already a major part of the crypto industry, without privacy, true institutional participation will never be practical. 

Now, Aztec is making this possible. 

Moving Whale-Sized Bags Privately on Aztec

We built an open-source private OTC trading system using Aztec Network's programmable privacy features. Because Aztec allows users to have private, programmable, and composable private state, users aren’t limited to only owning and transferring digital assets privately, but also programming and composing them via smart contracts.

If you’re new to Aztec, you can think of the network as a private world computer, with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

To build a private OTC desk, we leveraged all these tools provided by Aztec to implement a working proof of concept. Our private OTC desk is non-custodial and leverages private smart contracts and client-side proving to allow for complete privacy of the seller and buyer of the OTC.

How It Actually Works

For Sellers:

  1. Deploy a private escrow contract (only you know it exists at this stage)
  2. Initialize contract and set the terms (asset type, quantity, price)
  3. Deposit your assets into the contract
  4. After it’s been deployed, call a private API (the order book service)

For Buyers:

  1. Discover available orders through our privacy-preserving API
  2. Select trades that match your criteria
  3. Complete the seller's partial note with your payment
  4. Execute atomic swap – you get their assets, they get your payment

The Magic: Partial Notes are the technical breakthrough that make collaborative, asynchronous private transactions possible. Sellers create incomplete payment commitments that buyers can finish without revealing the seller's identity. It's like leaving a blank check that only the right person can cash, but neither party knows who the other is.

Privacy guarantees include: 

  • Complete Privacy: Neither party knows who they're trading with
  • Strategy Protection: Your trading patterns stay private
  • Market Impact Minimization: No public signals about large movements
  • Non-custodial: Direct peer-to-peer settlement, no intermediaries

Key Innovations

Private Contract Deployment: Unlike public decentralized exchanges where smart contracts are visible on the blockchain, the escrow contracts in this system are deployed privately, meaning that only the participants involved in the transaction know these contracts exist.

Partial Note Mechanism: This system uses cryptographic primitives that enable incomplete commitments to be finalized or completed by third parties, all while preventing those third parties from revealing or accessing any pre-existing information that was part of the original commitment.

Privacy-Preserving Discovery: The orderflow service maintains knowledge of aggregate trading volumes and overall market activity, but it cannot see the details of individual traders, including their specific trade parameters or personal identities.

Atomic Execution: The smart contract logic is designed to ensure that both sides of a trade occur simultaneously in a single atomic operation, meaning that if any part of the transaction fails, the entire transaction is rolled back and neither party's assets are transferred.

Build with us!

Our prototype for this is open-sourced here, and you can read about the proof of concept directly from the developer here

We're inviting teams to explore, fork, and commercialize this idea. The infrastructure for private institutional trading needs to exist, and Aztec makes it possible today. Whether you're building a private DEX, upgrading your OTC desk, or exploring new DeFi primitives, this codebase is your starting point. 

The traditional finance world conducts trillions in private OTC trades. It's time to bring that scale to crypto, privately.

To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Aztec Network
Aztec Network
15 Oct
xx min read

Your Private Money Yearns for a Private Economy

Watch this: Alice sends Zcash. Bob receives USDC on Aztec. Nobody, not even the system facilitating it, knows who Alice or Bob are.

And Bob can now do something with that money. Privately.

This is the connection between private money and a private economy where that money can actually be used.

Zcash has already achieved something monumental: truly private money. It’s the store of value that Bitcoin promised (but made transparent). Like, digital gold that actually stays hidden.

But here's the thing about gold - you don't buy coffee with gold bars. You need an economy where that value can flow, work, and grow. Privately.

Money Under the Mattress

While other projects are trying to bolt privacy onto existing chains as an afterthought, Zcash is one of the oldest privacy projects in Web3. It's achieved what dozens of projects are still chasing: a truly private store of value.

Total Shielded ZEC Value (USD): Sep 16 - Oct 14 | Source: zkp.baby/

This is critical infrastructure for freedom. The ability to store value privately is a fundamental right, a hedge against surveillance, and a given when using cash. We need a system that provides the same level of privacy guarantees as cash. Right now, there's over $1.1 billion sitting in Zcash's shielded pool, private wealth that's perfectly secure but essentially frozen.

Why frozen? Because the moment that shielded $ZEC tries to do anything beyond basic transfers: earn yield, get swapped for stablecoins, enter a liquidity pool, it must expose itself. The privacy in this format is destroyed.

This isn't Zcash's failure. They built exactly what they set out to build: the world's best private store of value. The failure is that the rest of crypto hasn't built where that value can actually work.

The Privacy Landscape Has an Imbalance

What happens when you want to do more than just send money? What happens when you want privacy after you transfer your money?

Private Digital Money (i.e., “Transfer Privacy,” largely solved by Zcash):

  • Zcash: est. 2016
  • Everyone else: building variants of digital money at the transaction or identity level
    • Monero
    • Ethereum privacy pools
    • 0xbow
    • Payy
    • Every privacy stablecoin project
    • Every confidential L2
    • Every privacy project you've ever heard of

Private World Computer (i.e., After-the-Transfer Privacy):

  • Aztec

Everyone else is competing to build better ways to hide money. Zcash has already built the private store of value, and Aztec has built the only way to use hidden money.

The Locked Liquidity Problem

Here's the trillion-dollar question: What good is private money if you can't use it?

Right now, Zcash's shielded pool contains billions in value. This is money in high-security vaults. But unlike gold in vaults that can be collateralized, borrowed against, or deployed, this private value just sits there.

Every $ZEC holder faces two impossible choices:

  1. Keep it shielded and forfeit all utility
  2. Unshield it to use it and forfeit all privacy

Our demo breaks this false sense of choice. For the first time, shielded value can move to a place where it remains private AND becomes useful.

The Private World Computer

Here's how you can identify whether you’re dealing with a private world computer, or just private digital money:

Without a private world computer (every other privacy solution):

  • Receive salary privately → Can't invest it
  • Store savings privately → Can't earn yield
  • Send money privately → Recipient can't use it privately

With a private world computer (only Aztec):

  • Receive salary privately → Invest it privately
  • Store savings privately → Earn APY privately
  • Send payment privately → Recipient spends it privately

This is basic financial common sense. Your money should grow. It should work. It should be useful.

The technical reality is that this requires private smart contracts. Aztec is building the only way to interact privately with smart contracts. These smart contracts themselves can remain completely hidden. Your private money can finally do what money is supposed to do: work for you.

What We Actually Built

Our demo proves these two worlds can connect:

  1. The Vault: Zcash
  2. The Engine: Aztec (where private money becomes useful)

We built the bridge between storing privately and doing privately.

The technical innovation - "partial notes" - are like temporary lockboxes that self-destruct after one use. Money can be put privately into these lockboxes, and a key can be privately handed to someone to unlock it. No one knows who put the money in, where the key came from, or who uses the key. You can read more about how they work here. But what matters isn't the mechanism. 

What matters is that Alice's Zcash can become Bob's working capital on Aztec without anyone knowing about either of them.

As a result, Bob receives USDC that he can:

  • Earn yield on
  • Trade with
  • Pay suppliers with
  • Build a business on
  • All privately

Why This Required Starting from Scratch (and 8 years of building)

You can't bolt privacy onto existing systems. You can't take Ethereum and make it private. You can't take a transparent smart contract platform and add privacy as a feature.

Aztec had to be built from the ground up as a private world computer because after-the-transfer privacy requires rethinking everything:

  • How state is managed
  • How contracts execute
  • How proofs are generated
  • How transactions are ordered

This is why there's only one name building fully private smart contracts. From the beginning, Aztec has been inspired by the work Zcash has done to create a private store of value. That’s what led to the vision for a private world computer.

Everyone else is iterating on the same transfer privacy problem. Aztec solves a fundamentally different problem.

The Obvious Future

Once you see it, you can't unsee it: Privacy without utility is only the first step.

Every privacy project will eventually need what Aztec built. Because their users will eventually ask: "Okay, my money is private... now what?"

  • Zcash users will want their $ZEC to earn yield
  • Privacy pool users will want to do more than just mix
  • Private stablecoin users will want to actually… use their stablecoins

This demo that connects Zcash to Aztec is the first connection between the old world (private transfers) and the new world (private everything else).

What This Means

For Zcash Holders: Your shielded $ZEC can finally do something without being exposed.

For Developers: Stop trying to build better mattresses to hide money under. Start building useful applications on the only platform that keeps them private. 

For the Industry: The privacy wars are over. There's transfer privacy (solved by Zcash) and after-the-transfer privacy (just Aztec).

What’s Next? 

This demo is live. The code is open source. The bridge between private money and useful private money exists.

But this is just the beginning. Every privacy project needs this bridge. Every private payment network needs somewhere for those payments to actually be used.

We're not competing with transfer privacy. We're continuing it.

Your private money yearns for the private economy.

Welcome to after-the-transfer privacy. Welcome to Aztec.