#

Inside Aztec

Inside
Aztec

purple_2
Aztec Network
30 Jan
xx min read

Aztec Ignition Chain Update

The first decentralized L2 on Ethereum reaches 75k block height with 30M $AZTEC distributed through block rewards.

In November 2025, the Aztec Ignition Chain went live as the first decentralized L2 on Ethereum. Since launch, more than 185 operators across 5 continents have joined the network, with 3,400+ sequencers now running. The Ignition Chain is the backbone of the Aztec Network; true end-to-end programmable privacy is only possible when the underlying network is decentralized and permissionless. 

Until now, only participants from the $AZTEC token sale have been able to stake and earn block rewards ahead of Aztec's upcoming Token Generation Event (TGE), but that's about to change. Keep reading for an update on the state of the network and learn how you can spin up your own sequencer or start delegating your tokens to stake once TGE goes live.

Block Production 

The Ignition Chain launched to prove the stability of the consensus layer before the execution environment ships, which will enable privacy-preserving smart contracts. The network has remained healthy, crossing a block height of 75k blocks with zero downtime. That includes navigating Ethereum's major Fusaka upgrade in December 2025 and a governance upgrade to increase the queue speed for joining the sequencer set.

Source: AztecBlocks

Block Rewards

Over 30M $AZTEC tokens have been distributed to sequencers and provers to date. Block rewards go out every epoch (every 32 blocks), with 70% going to sequencers and 30% going to provers for generating block proofs.

If you don't want to run your own node, you can delegate your stake and share in block rewards through the staking dashboard. Note that fractional staking is not currently supported, so you'll need 200k $AZTEC tokens to stake.

Global Participation  

The Ignition Chain launched as a decentralized network from day one. The Aztec Labs and Aztec Foundation teams are not running any sequencers on the network or participating in governance. This is your network.

Anyone who purchased 200k+ tokens in the token sale can stake or delegate their tokens on the staking dashboard. Over 180 operators are now running sequencers, with more joining daily as they enter the sequencer set from the queue. And it's not just sequencers: 50+ provers have joined the permissionless, decentralized prover network to generate block proofs.

These operators span the globe, from solo stakers to data centers, from Australia to Portugal.

Source: Nethermind 

Node Performance

Participating sequencers have maintained a 99%+ attestation rate since network launch, demonstrating strong commitment and network health. Top performers include P2P.org, Nethermind, and ZKV. You can see all block activity and staker performance on the Dashtec dashboard. 

How to Join the Network 

On January 26th, 2026, the community passed a governance proposal for TGE. This makes tokens tradable and unlocks the AZTEC/ETH Uniswap pool as early as February 11, 2026. Once that happens, anyone with 200k $AZTEC tokens can run a sequencer or delegate their stake to participate in block rewards.

Here's what you need to run a validator node:

  • CPU: 8 cores
  • RAM: 16 GB
  • Storage: 1 TB NVMe SSD
  • Bandwidth: 25 Mbps

These are accessible specs for most solo stakers. If you've run an Ethereum validator before, you're already well-equipped.

To get started, head to the Aztec docs for step-by-step instructions on setting up your node. You can also join the Discord to connect with other operators, ask questions, and get support from the community. Whether you run your own hardware or delegate to an experienced operator, you're helping build the infrastructure for a privacy-preserving future.

Solo stakers are the beating heart of the Aztec Network. Welcome aboard.

Most Recent
Aztec Network
22 Jan
xx min read

The $AZTEC TGE Vote: What You Need to Know

The TL:DR:

  • The $AZTEC token sale, conducted entirely onchain concluded on December 6, 2025, with ~50% of the capital committed coming from the community. 
  • Immediately following the sale, tokens could be withdrawn from the sale website into personal Token Vault smart contracts on the Ethereum mainnet.
  • The proposal for TGE (Token Generation Event) is now live, and sequencers can start signaling to bring the proposal to a vote to unlock these tokens and make them tradeable. 
  • Anyone who participated in the token sale can participate in the TGE vote. 

The $AZTEC token sale was the first of its kind, conducted entirely onchain with ~50% of the capital committed coming from the community. The sale was conducted completely onchain to ensure that you have control over your tokens from day one. As we approach the TGE vote, all token sale participants will be able to vote to unlock their tokens and make them tradable. 

What Is This Vote About?

Immediately following the $AZTEC token sale, tokens could be withdrawn from the sale website into your personal Token Vault smart contracts on the Ethereum mainnet. Right now, token holders are not able to transfer or trade these tokens. 

The TGE is a governance vote that decides when to unlock these tokens. If the vote passes, three things happen:

  1. Tokens purchased in the token sale become fully transferable 
  2. Trading goes live for the Uniswap v4 pool
  3. Block rewards become transferable for sequencers

This decision is entirely in the hands of $AZTEC token holders. The Aztec Labs and Aztec Foundation teams, and investors cannot participate in staking or governance for 12 months, which includes the TGE governance proposal. Team and investor tokens will also remain locked for 1 year and then slowly unlock over the next 2 years. 

The proposal for TGE is now live, and sequencers are already signaling to bring the proposal to a vote. Once enough sequencers have signaled, anyone who participated in the token sale will be able to connect their Token Vault contract to the governance dashboard to vote. Note, this will require you to stake/unstake and follow the regular 15-day process to withdraw tokens.

If the vote passes, TGE can go live as early as February 12, 2026, at 7am UTC. TGE can be executed by the first person to call the execute function to execute the proposal after the time above. 

How Do I Participate?

If you participated in the token sale, you don't have to do anything if you prefer not to vote. If the vote passes, your tokens will become available to trade at TGE. If you want to vote, the process happens in two phases:

Phase 1: Sequencer Signaling

Sequencers kick things off by signaling their support. Once 600 out of 1,000 sequencers signal, the proposal moves to a community vote.

Phase 2: Community Voting

After sequencers create the proposal, all Token Vault holders can vote using the voting governance dashboard. Please note that anyone who wants to vote must stake their tokens, locking their tokens for at least 15 days to ensure the proposal can be executed before the voter exits. Once signaling is complete, the timeline is as follows:

  • Days 1–3: Waiting period 
  • Days 4–10: Voting period (7 days to cast your vote)
  • Days 11–17: Execution delay
  • Days 18–24: Grace period to execute the proposal

Vote Requirements:

  • At least 100M tokens must participate in the vote. This is less than 10% of the tokens sold in the token sale.  
  • 66% of votes must be in favor for the vote to pass.

Frequently Asked Questions

Do I need to participate in the vote? No. If you don't vote, your tokens will become available for trading when TGE goes live. 

Can I vote if I have less than 200,000 tokens? Yes! Anyone who participated in the token sale can participate in the TGE vote. You'll need to connect your wallet to the governance dashboard to vote. 

Is there a withdrawal period for my tokens after I vote? Yes. If you participate in the vote, you will need to withdraw your tokens after voting. Voters can initiate a withdrawal of their tokens immediately after voting, but require a standard 15-day withdrawal period to ensure the vote is executed before voters can exit.

If I have over 200,000 tokens is additional action required to make my tokens tradable after TGE? Yes. If you purchased over 200,000 $AZTEC tokens, you will need to stake your tokens before they become tradable. 

What if the vote fails? A new proposal can be submitted. Your tokens remain locked until a successful vote is completed, or the fallback date of November 13, 2026, whichever happens first.

I'm a Genesis sequencer. Does this apply to me? Genesis sequencer tokens cannot be unlocked early. You must wait until November 13, 2026, to withdraw. However, you can still influence the vote by signaling, earn block rewards, and benefit from trading being enabled.

Where to Learn More

This overview covers the essentials, but the full technical proposal includes contract addresses, code details, and step-by-step instructions for sequencers and advanced users. 

Read the complete proposal on the Aztec Forum and join us for the Privacy Rabbit Hole on Discord happening this Thursday, January 22, 2026, at 15:00 UTC. 

Follow Aztec on X to stay up to date on the latest developments.

Aztec Network
6 Dec
xx min read

$AZTEC TGE: Next Steps For Holders

The TL;DR: 

The $AZTEC token sale was conducted entirely onchain to maximize transparency and fair distribution. Next steps for holders are as follows:

  1. Step 1: Create your Token Vault on the sale website. Your Token Vault will keep your tokens secure on Ethereum, keep them non-transferable until TGE, allow you to stake/delegate/participate in governance, and then withdraw them to your wallet after TGE.
  1. Step 2: Staking and Earning Block Rewards. If you have more than 200,000 tokens, you can start staking today on the staking dashboard
  1. Step 3: Token sale participants can vote for TGE as early as February 11th, 2026, at which 100% of tokens from the sale become transferable, and a Uniswap V4 pool goes live. 

The $AZTEC token sale has come to a close– the sale was conducted entirely onchain, and the power is now in your hands. Over 16.7k people participated, with 19,476 ETH raised. A huge thank you to our community and everyone who participated– you all really showed up for privacy. 50% of the capital committed has come from the community of users, testnet operators and creators!

Now that you have your tokens, what’s next? This guide walks you through the next steps leading up to TGE, showing you how to withdraw, stake, and vote with your tokens.

Step 1: Creating a Token Vault 

The $AZTEC sale was conducted onchain to ensure that you have control over your own tokens from day 1 (even before tokens become transferable at TGE). 

The team has no control over your tokens. You will be self-custodying them in a smart contract known as the Token Vault on the Ethereum mainnet ahead of TGE. 

Your Token Vault contract will: 

  • Keep your tokens secure on the Ethereum mainnet.
  • Ensure tokens remain non-transferable until TGE.
  • Allows you to stake, delegate, and take part in governance.
  • After TGE, you can withdraw your tokens to your wallet.

To create and withdraw your tokens to your Token Vault, simply go to the sale website and click on ‘Create Token Vault.’ Any unused ETH from your bids will be returned to your wallet in the process of creating your Token Vault. 

Step 2: Staking and Earning Block Rewards 

If you have 200,000+ tokens, you are eligible to start staking and earning block rewards today. 

You can stake by connecting your Token Vault to the staking dashboard, just select a provider to delegate your stake. Alternatively, you can run your own sequencer node.

If your Token Vault holds 200,000+ tokens, you must stake in order to withdraw your tokens after TGE. If your Token Vault holds less than 200,000 tokens, you can withdraw without any additional steps at TGE

Fractional staking for anyone with less than 200,000 tokens is not currently supported, but multiple external projects are already working to offer this in the future. 

Step 3: TGE 

TGE is triggered by an onchain governance vote, which can happen as early as February 11th, 2026. 

At TGE, 100% of tokens from the token sale will be transferable. Only token sale participants and genesis sequencers can participate in the TGE vote, and only tokens purchased in the sale will become transferrable. 

How does the voting process work? 

Community members discuss potential votes on the governance forum. If the community agrees, sequencers signal to start a vote with their block proposals. Once enough sequencers agree, the vote goes onchain for eligible token holders. 

Voting lasts 7 days, requires participation of at least 100,000,000 $AZTEC tokens, and passes if 2/3 vote yes.

What happens when the vote passes? 

Following a successful yes vote, anyone can execute the proposal after a 7-day execution delay, triggering TGE. 

At TGE, the following tokens will be 100% unlocked and available for trading: 

  • All tokens in Token Vaults that belong to token sale participants.
  • Accumulated block rewards for anyone staking.
  • Uniswap V4 pool. This pool will have 273,000,000 $AZTEC tokens and a matching ETH amount at the final clearing price. 

Join us Thursday, December 11th at 3 pm UTC for the next Discord Town Hall–AMA style on next steps for token holders. Follow Aztec on X to stay up to date on the latest developments.

Aztec Network
13 Nov
xx min read

The ticker is $AZTEC

We invented the math. We wrote the language. Proved the concept and now, we’re opening registration and bidding for the $AZTEC token today, starting at 3 pm CET. 

The community-first distribution offers a starting floor price based on a $350 million fully diluted valuation (FDV), representing an approximate 75% discount to the implied network valuation (based on the latest valuation from Aztec Labs’ equity financings). The auction also features per-user participation caps to give community members genuine, bid-clearing opportunities to participate daily through the entirety of the auction. 

How to Check Eligibility and Submit Your Bid 

The token auction portal is live at: sale.aztec.network

  • This is the only valid link to the $AZTEC token auction site. Be cautious of phishing scams. No one from the Aztec team will ever contact you directly for seed phrase or private keys. 
  • Visit the site to verify your eligibility and mint a soul-bound NFT that confirms your participation rights. 
  • We have incorporated zero-knowledge proofs into the sale smart contracts by using ZKPassport's Noir circuits to ensure compliant sanctions checks without risking the privacy of our users. 
  • Registration and bidding for early contributors start today, November 13th, at 3 PM CET, with early contributors receiving one day of exclusive access before bidding opens to the general public.
  • The public auction will run from December 2nd, 2025, to December 6th, 2025, at which point tokens can be withdrawn and staked.

Why Are We Doing This? 

We’ve taken the community access that made the 2017 ICO era great and made it even better. 

For the past several months, we've worked closely with Uniswap Labs as core contributors on the CCA protocol, a set of smart contracts that challenge traditional token distribution mechanisms to prioritize fair access, permissionless, on-chain access to community members and the general public pre-launch. This means that on day 1 of the unlock, 100% of the community's $AZTEC tokens will be unlocked.

This model is values-aligned with our Core team and addresses the current challenges in token distribution, where retail participants often face unfair disadvantages against whales and institutions that hold large amounts of money. 

Early contributors and long-standing community members, including genesis sequencers, OG Aztec Connect users, network operators, and community members, can start bidding today, ahead of the public auction, giving those who are whitelisted a head start and early advantage for competitive pricing. Community members can participate by visiting the token sale site to verify eligibility and mint a soul-bound NFT that confirms participation rights. 

To read more about Aztec’s fair-access token sale, visit the economic and technical whitepapers and the token regulatory report.

Discount Price Disclaimer: Any reference to a prior valuation or percentage discount is provided solely to inform potential purchasers of how the initial floor price for the token sale was calculated. Equity financing valuations were determined under specific circumstances that are not comparable to this offering. They do not represent, and should not be relied upon as, the current or future market value of the tokens, nor as an indication of potential returns. The price of tokens may fluctuate substantially, the token may lose its value in part or in full, and purchasers should make independent assessments without reliance on past valuations. No representation or warranty is made that any purchaser will achieve profits or recover the purchase price.

Information for Persons in the UK: This communication is directed only at persons outside the UK. Persons in the UK are not permitted to participate in the token sale and must not act upon this communication.

MiCA Disclaimer: Any crypto-asset marketing communications made from this account have not been reviewed or approved by any competent authority in any Member State of the European Union. Aztec Foundation as the offeror of the crypto-asset is solely responsible for the content of such crypto-asset marketing communications. The Aztec MiCA white paper has been published and is available here. The Aztec Foundation can be contacted at hello@aztec.foundation or +41 41 710 16 70. For more information about the Aztec Foundation, visit https://aztec.foundation.

Aztec Network
28 Oct
xx min read

Your Favorite DeFi Apps, Now With Privacy

Every time you swap tokens on Uniswap, deposit into a yield vault, or vote in a DAO, you're broadcasting your moves to the world. Anyone can see what you own, where you trade, how much you invest, and when you move your money.

Tracking and analysis tools like Chainalysis and TRM are already extremely advanced, and will only grow stronger with advances in AI in the coming years. The implications of this are that the ‘pseudo-anonymous’ wallets on Ethereum are quickly becoming linked to real-world identities. This is concerning for protecting your personal privacy, but it’s also a major blocker in bringing institutions on-chain with full compliance for their users. 

Until now, your only option was to abandon your favorite apps and move to specialized privacy-focused apps or chains with varying degrees of privacy. You'd lose access to the DeFi ecosystem as you know it now, the liquidity you depend on, and the community you're part of. 

What if you could keep using Uniswap, Aave, Yearn, and every other app you love, but with your identity staying private? No switching chains. Just an incognito mode for your existing on-chain life? 

If you’ve been following Aztec for a while, you would be right to think about Aztec Connect here, which was hugely popular with $17M TVL and over 100,000 active wallets, but was sunset in 2024 to focus on bringing a general-purpose privacy network to life. 

Read on to learn how you’ll be able to import privacy to any L2, using one of the many privacy-focused bridges that are already built. 

The Aztec Network  

Aztec is a fully decentralized, privacy-preserving L2 on Ethereum. You can think of Aztec as a private world computer with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

On Aztec, every wallet is a smart contract that gives users complete control over which aspects they want to make public or keep private. 

Aztec is currently in Testnet, but will have multiple privacy-preserving bridges live for its mainnet launch, unlocking a myriad of privacy preserving features.

Bringing Privacy to You

Now, several bridges, including Wormhole, TRAIN, and Substance, are connecting Aztec to other chains, adding a privacy layer to the L2s you already use. Think of it as a secure tunnel between you and any DeFi app on Ethereum, Arbitrum, Base, Optimism, or other major chains.

Here's what changes: You can now use any DeFi protocol without revealing your identity. Furthermore, you can also unlock brand new features that take advantage of Aztec’s private smart contracts, like private DAO voting or private compliance checks. 

Here's what you can do:

  • Use DeFi without revealing your portfolio: trade on Uniswap or deposit into Yearn without broadcasting your strategy to the world
  • Donate to causes without being tracked: support projects on Base without linking donations to your identity
  • Vote in DAOs without others seeing your choices: participate in governance on Arbitrum while keeping your votes private
  • Prove you're legitimate without doxxing yourself: pass compliance checks or prove asset ownership without revealing which specific assets you hold
  • Access exclusive perks without revealing which NFTs you own: unlock token-gated content on Optimism without showing your entire collection

The apps stay where they are. Your liquidity stays where it is. Your community stays where it is. You just get a privacy upgrade.

How It Actually Works 

Let's follow Alice through a real example.

Alice wants to invest $1,000 USDC into a yield vault on Arbitrum without revealing her identity. 

Step 1: Alice Sends Funds Through Aztec

Alice moves her funds into Aztec's privacy layer. This could be done in one click directly in the app that she’s already using if the app has integrated one of the bridges. Think of this like dropping a sealed envelope into a secure mailbox. The funds enter a private space where transactions can't be tracked back to her wallet.

Step 2: The Funds Arrive at the DeFi Vault

Aztec routes Alice's funds to the Yearn vault on Arbitrum. The vault sees a deposit and issues yield-earning tokens. But there's no way to trace those tokens back to Alice's original wallet. Others can see someone made a deposit, but they have no idea who.

Step 3: Alice Gets Her Tokens Back Privately

The yield tokens arrive in Alice's private Aztec wallet. She can hold them, trade them privately, or eventually withdraw them, without anyone connecting the dots.

Step 4: Alice Earns Yield With Complete Privacy

Alice is earning yield on Arbitrum using the exact same vault as everyone else. But while other users broadcast their entire investment strategy, Alice's moves remain private. 

The difference looks like this:

Without privacy: "Wallet 0x742d...89ab deposited $5,000 into Yearn vault at 2:47 PM"

With Aztec privacy: "Someone deposited funds into Yearn vault" (but who? from where? how much? unknowable).

In the future, we expect apps to directly integrate Aztec, making this experience seamless for you as a user. 

The Developers Behind the Bridges 

While Aztec is still in Testnet, multiple teams are already building bridges right now in preparation for the mainnet launch.

Projects like Substance Labs, Train, and Wormhole are creating connections between Aztec and major chains like Optimism, Unichain, Solana, and Aptos. This means you'll soon have private access to DeFi across nearly every major ecosystem.

Aztec has also launched a dedicated cross-chain catalyst program to support developers with grants to build additional bridges and apps. 

Unifying Liquidity Across Ethereum L2s

L2s have sometimes received criticism for fragmenting liquidity across chains. Aztec is taking a different approach. Instead, Aztec is bringing privacy to the liquidity that already exists. Your funds stay on Arbitrum, Optimism, Base, wherever the deepest pools and best apps already live. Aztec doesn't compete for liquidity, it adds privacy to existing liquidity.

You can access Uniswap's billions in trading volume. You can tap into Aave's massive lending pools. You can deposit into Yearn's established vaults, all without moving liquidity away from where it's most useful.

The Future of Private DeFi

We’re rolling out a new approach to how we think about L2s on Ethereum. Rather than forcing users to choose between privacy and access to the best DeFi applications, we’re making privacy a feature you can add to any protocol you're already using. As more bridges go live and applications integrate Aztec directly, using DeFi privately will become as simple as clicking a button—no technical knowledge required, no compromise on the apps and liquidity you depend on.

While Aztec is currently in testnet, the infrastructure is rapidly taking shape. With multiple bridge providers building connections to major chains and a dedicated catalyst program supporting developers, the path to mainnet is clear. Soon, you'll be able to protect your privacy while still participating fully in the Ethereum ecosystem. 

If you’re a developer and want a full technical breakdown, check out this post. To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Explore by Topic
Aztec Network
Aztec Network
13 Aug
xx min read

Devnet Goes Live: Introducing Alpha Build with $100K in Prizes

Devnet is now live! This milestone enables private, client-side smart contract execution with robust public verifiability, a massive milestone for Aztec and the Ethereum community.

To celebrate this milestone, we’re launching Alpha Build, a series of three developer sprints with a USD $100,000 prize pool and the opportunity to deploy on the Aztec Network for the first time.

The first Alpha Build will kick off Monday, August 19th with two additional Alpha Builds happening by mid-November. Alpha Build participants will receive expert mentorship, gain direct access to the team, and connect with a growing community of over 300 developers from around the globe. In addition to cash prizes, top builders will be invited to deploy their applications on the Devnet.

Complete the Alpha Build Application to gain access to the Discord server, and download the Aztec Sandbox to get started.

How Did We Get Here?

Devnet is a culmination of all the hard work and iteration over the past 7 years. 

In March 2023, we made a bold commitment to focus on bringing the Aztec Network to life and delivering true programmable privacy. Over the past year and a half, our team has worked tirelessly to bring this vision to life, and their efforts have paid off. 

Today, we’re proud to deliver on that commitment and unveil a live Devnet, realizing the integration of all essential components of the tech stack, including Honk, cutting-edge cryptography, Noir for smart contract development, a private execution environment (PXE) for client-side proof generation, and a sequencer for transaction processing and public execution. 

Together, they enable private, client-side smart contract execution with robust public verifiability, marking a significant leap forward for the Aztec Network.

More on Alpha Build   

Over the next few months, we’ll run three themed Alpha Builds with challenges across the most important use cases in crypto, including payments, gaming, and identity. Privacy expands the design space so you can explore solutions for conditional payments, on and off-chain access control using NFTs stored privately on Aztec, or card games with a shared hidden public state.

The three challenges for Alpha Build One (ab1) will focus on payment use cases with an emphasis on building a UI, Account Abstraction and Fee Abstraction features. If you’re new to Aztec or have been with us from the beginning, ab1 is your chance to dive deep into underexplored problems and designs while contributing to the growing ecosystem. 

Complete the Alpha Build Application to gain access to the Discord server, and download the Aztec Sandbox to get started.

ab1 Challenge Overview

The Alpha Build payment challenges are designed to build upon each other, increasing in complexity as the weeks progress. Here’s what you can expect:

  1. Challenge #1: Wallet
    • Develop an interface similar to Daimo/Payy that uses secp256r1 signature verification, similar to FaceID or TouchID.
    • Build a web interface to facilitate smooth user interaction with Aztec.
  2. Challenge #2: Programmable Accounts
    • Create custom account contracts with alternative authorization methods than simple digital signatures.
    • Integrate transaction authorization through zkemail.
    • Implement features for spending limits or a multisig account contract.
  3. Challenge #3: Programmable Fee
    • Design a system to sponsor transaction fees on behalf of users.
    • Develop a Paymaster capable of handling payments in multiple tokens.

Throughout the challenges, the DevRel Team will provide Discord support and host weekly office hours from 10 a.m. - 11 a.m. ET every Wednesday and Thursday. 

Submission Criteria

All submissions for ab1 are due by Sunday, September 15th, 2024, and must include the following: 

  • A link to the GitHub repo of your project 
  • A README file that describes how to run and use the applications and or contracts 
  • X handle
  • Telegram
  • Discord username

Let’s Create the Future of Payments, Together  

Don’t miss this opportunity to deploy on the Aztec Network for the first time. 

To get started, fill out the Alpha Build Application. We will review applications and, if selected, invite you to join a private Discord channel for our Alpha Build. 

The Devnet Live Celebration will be on Friday, August 16th, 2024, at 11:30 a.m. ET on X. Join Cat, our Developer Relations Engineer, and President and Co-Founder, Joe Andrews as they dive deep into Alpha Build season, exploring challenges, themes, and innovative ideas. 

Research
Research
8 Aug
xx min read

Does zero-knowledge provide privacy?

Intro

In blockchain narrative, the term “zero knowledge” entered our vocabulary when rollups first emerged. In particular, we’ve heard it a lot in the context of zero knowledge rollups (ZK-rollups). But, zero knowledge technology has existed for years before. The first article on zero knowledge was published back in 1989.

In this blog, we’ll break it down to clarify what zero knowledge (ZK) is and what it ISN’T (the latter might actually be more interesting than the former). We’ll investigate if ZK-rollups have any ZK for real, and if not, why they get to use the term at all, and dive into the difference between ZK as a technology and ZK as a marketing term.

For those who need answers right away:

  • ZK-rollup provides a succinct verification mechanism
  • But ZK-rollup does NOT provide privacy

*by privacy we mean (i) user privacy (transaction sender and recipient), (ii) data privacy (payload of the transaction, e.g., the asset or value being transacted), and (iii) code privacy (the program logic).

Now let’s dive a bit deeper.

Zero Knowledge Property Outside of Rollups

If we want to discuss ZK in a rollup context, we first need to understand zero knowledge property on its own. As we mentioned above, the concept of ZK was introduced in 1989 (years before the first blockchain was baked) in a paper titled, “The knowledge complexity of interactive proof systems.” It wasn’t until around 2018 that the Ethereum community figured out ZK might be a good fit for a rollup universe.

We usually consider zero knowledge as a property of a proving system. In blockchain, we often say ZKP, meaning zero knowledge proof. But “proof” might mean proof of statement or proof of knowledge. So, in the next section of this article, we will differentiate between the two types of proofs.

Proof of Statement

Proof of statement proves that a statement is true without revealing anything about the statement itself.

Examples of statements:

  • z is a square modular n: z = x^2 mod n
  • The graphs G and H are non-isomorphic
  • The number 638634389........3427 has 3 prime factors

Proof of Knowledge

Proof of knowledge proves that the person making an assertion has some knowledge about the statement.

So, if we look at the examples from the previous paragraph side-by-side:

Proof of StatementProof of Knowledgez is a square modular n: z = x^2 mod n.I know a value x such that z = x^2 (mod n).The graphs G and H are non-isomorphic.I know the isomorphism between two graphs, G and H.The number 638634389........3427 has 3 prime factors.I know the factors of the number 638634389........3427.

One should note that every proof of knowledge is a proof of statement (but not the opposite). For instance, if one proves that they know a value x such that z = x^2 (mod n), this will be proof of knowledge, but it also automatically proves that z is a square modulo n (proof of statement).

Let’s explore one of these examples to see how proof of statement and proof of knowledge can be constructed!

Exploring Examples: the Graph-Isomorphism Problem

Let’s use the graph-isomorphism problem. To do this, we’ll say proof of graph non-isomorphism will be proof of statement, while a proof of graph isomorphism will be proof of knowledge.

What Is the Graph-Isomorphism Problem?

Basically graph isomorphism (denoted by ≅) is the following: two graphs with labeled nodes are isomorphic if they are "the same" up to a permutation of the labels. That is to say, there exists a permutation of the labels of one graph that results in the other graph.

More formally, we say that two graphs G and H are isomorphic if there is a bijective function f between the vertices’ labels of G and H such that there is an edge between the vertices u and v in G if and only if there is an edge between the vertices f(u) and f(v) in H.

An example of two isomorphic graphs:

Source

If there exists no such permutation, we say that the two graphs are non-isomorphic. Now, assume we want to prove that two graphs are non-isomorphic. We only want to prove this single fact; nothing about the graphs themselves, no other knowledge except for the statement that they are non-isomorphic.

Example of A Proof of statement: the Graph-Non-Isomorphism Problem

Proof intuition:

  • If there are two non-isomorphic graphs G and H, one randomly chooses a permutation π (re-orders elements in a deterministic way) as well as randomly chooses one of two graphs, and calculates K = π{G or H} that is K is a permutation of either G or H.
  • If G and H were isomorphic, anyone else should NOT be able to tell from which of the two graphs K was computed, and could only guess.
  • The probability of guessing would be ½. Repeating the protocol enough times makes the probability of guessing negligible.

One round of protocol:

Example of A Proof of Knowledge: Graph Isomorphism

Now, let’s think… What if we want to prove two graphs are isomorphic? In other words, the Prover wants to prove that they know the isomorphism σ such that H = σ(G).

Proof intuition:

  • If σ is an isomorphism between two graphs, it means that H = σ(G) and G = σ^{-1}(H) where σ^{-1} is the reverse isomorphism.
  • Let π be a permutation randomly chosen by the Prover. Using ρ = πσ^{-c} (where the Verifier randomly assigns 0 or 1 to c), they get either  ρ = π or ρ = πσ^{-1}.
  • By applying ρ = π to a graph, one will get its permutation. By applying  ρ = πσ^{-1} to a graph, one will get its permuted reverse isomorphism:

One round of protocol:

Back to Zero Knowledge!

Now that we’ve explored examples of proof of statement and proof of knowledge, let’s discuss whether or not they have zero knowledge property.

Informally, zero knowledge means that a Verifier can’t retrieve any additional information from a Prover (except for the information clear from the proof itself).

In the example of graph isomorphism, proof of knowledge is zero knowledge (with honest Verifier). According to the protocol, the Prover doesn’t reveal any information on the isomorphism or permutation to the Verifier. Instead, they send the Verifier commitments and that’s it.

However, in the example of the proof of graph non-isomorphism, it’s not zero knowledge. Because, instead of setting K = π(G) or K = π(H), a malicious Verifier (i.e. a Verifier which deviates from the protocol) can set K = π{RANDOM GRAPH} and as a result of the protocol execution by the Prover, the Verifier will know if RANDOM_GRAPH is isomorphic to either G or H. So the Verifier is definitely able to retrieve additional information.

Can we convert our proof of graph non-isomorphism into zero knowledge? Yes, we can. The Verifier should also provide proof that (i) the graph it sends is isomorphic either to G or to H (meaning the graph they’re sending is not arbitrary), and (ii) they know the isomorphism.

One should note that most protocols in the space are only honest-verifier ZK (i.e. ZK property doesn’t hold with malicious verifier). However, this isn’t an issue because the protocols are made non-interactive with the Fiat-Shamir heuristic. Hence – there is no distinction for non-interactive protocols as the verifier cannot "misbehave.”

Now, when we differentiated between proof of statement and proof of knowledge and saw that both of them can have zero knowledge property or not have it, let’s take a look at ZK-rollup and figure out (i) does it use proof of statement or proof of knowledge, (ii) does it have zero knowledge property?

Finally, Back to ZK-Rollups!

In a ZK-rollups, the logic is pretty similar to the graph-non-isomorphism problem (where we prove the statement that two graphs are non-isomorphic). In ZK-rollup, we prove the statement that the state transition was done correctly.

A Glimpse into How ZK-Rollups Work

In this section, we’ll briefly cover how ZK-rollups work and how they utilize proofs. By “ZK-rollups,'' we mean regular (i.e. NON-privacy-preserving) ZK-rollups such as Scroll, Starknet, zksync, Taiko, and many more.

The main use of “vanilla” ZK-rollups is to enable scalability by posting a single proof of the validity of transactions.

ZK-rollups execute transactions off-chain and post proof on L1 (Ethereum) that whatever they did off-chain was done correctly. Their purpose is to prove that the new chain state is correct.

To generate a proof of correct state transition, one needs to prove that all transactions were executed correctly on given inputs.

For the sake of this, the Prover needs to know previous state and input values.

However, for the Verifier to verify the proof, they need to have the proof as well as to know new state, previous state, and input values:

Inputs

There are two types of inputs, public and private. In ZK-rollups, “private input” does NOT mean “secret” even though they are called “private.” Instead, it means that private inputs are consumed by Prover only while public inputs are consumed both by Prover and Verifier (sometimes private inputs are also called “witness” as a reference to the NP complexity class). Public inputs are expensive as they need to be submitted to L1 hence we want it to be as small (“succinct”) as possible. In terms of what these inputs consist of in the context of the proof:

Public inputs (consumed by Prover AND Verifier) – all data that needs to be submitted to L1 so that everyone can update their records of the current state. This will include new state root as well as might include signatures, sender, receiver, functions, contract addresses, function arguments, newly-deployed contract data, storage slots which have changed and their new values, events that were emitted. One should note that this reveals A LOT of information to a public observer. The specific list of public inputs will depend on the specific ZK-rollup design.

Private inputs (consumed by Prover ONLY) – all information that was needed by rollup circuits to prove correctness of the state transition. This will include Merkle membership proofs (hash paths) as well as the execution trace (might include transaction inputs such as newly-deployed contract data, storage slots which have changed and their new values, and events that were emitted).

As you can see from the logic above, private inputs have nothing to do with privacy. So if a ZK-rollup is generating a proof that Alice sent Bob 1ETH, both the Prover and the Verifier will be aware of this information (i.e. no privacy at all!).

To sum it up, in the case of a ZK-rollup, we want to prove the validity of transactions, it is a proof of statement and it does NOT have zero-knowledge property because all the information (i.e. state, functions, inputs) is public and everything that is not provided explicitly can be derived by a Verifier.

That is to say, there is no ZK in a vanilla ZK-rollup. Why is it called ZK-rollup then?

Maybe… For the sake of marketing =)

And Still, Can ZK Provide Privacy?

Short answer: yes, it can. While the main use of “vanilla” ZK-rollups is to enable scalability, the main use of Aztec is to enable scalability AND allow privacy. And, it utilizes ZK exactly for the privacy purpose.

Aztec provides privacy by means of client-side proof generation, i.e. whatever should be processed privately is processed on the user’s device and then a proof of its correct execution is supplied to the mempool.

Processed privately means that

  • Transactions are processed privately (on user’s device)
  • Their outputs shroud side effects (such as note hashes and nullifiers)
  • And those get added to the global state without revealing any information to anyone except for (i) the client who executed transactions and emitted side effects, and (ii) the receiver of side effects (for example, in case of a transfer from Alice to Bob, Alice executes transactions client-side and emits side effects and Bob receives side effects).

Client-side proofs are then verified by the sequencer (who manages the mempool).

In this case, client-side proof is a zero knowledge proof of statement: the sequencer verifies the proof validity without any information about what was executed on the client-side, and is unable to retrieve any information about it.

After client-side proofs have been verified by the sequencer, everything is similar to a vanilla ZK-rollup mechanism as described in the previous section. That is to say, Aztec ZK-rollup first generates a number of client-side proofs (which are zero knowledge proofs) and then a block proof (which is not zero knowledge).

One Can’t Just Add ZK to Get Privacy

It’s not possible to add privacy ad-hoc to an already existing ZK-rollup. It should be designed to be private from the very beginning.

One first needs to give a precise definition of “privacy” as the statements proved, depending on the rollup design, may reveal unnecessary information and harm user privacy.

If builders want their dApps to interact with the external world; meaning that dApps aren’t monolithically private but instead allow some functions and variables to be private while some functions and variables stay public (e.g. necessary for AMMs, lending protocols, etc.), rollup state management becomes very non-trivial. Now it has to process public and private state updates separately. However, it’s exactly the latter approach that unlocks dozens of use cases we’ve been dreaming about for years! (Think programmable on-chain identity management and DeFi alternatives to conservative financial institutions).

As of today, Aztec is one of very few privacy-preserving L2s on Ethereum where privacy is provided by processing private information on the client-side. Check out this article to dive into client-side proof generation and this article to learn more about Aztec smart contracts anatomy allowing for hybrid private and public state management.

Ready to join Aztec’s building pioneers? Let us know by filling out this form.

Many thanks to Palla, Patrick, and Brecht for review.

Noir
Noir
8 Aug
xx min read

Unlocking the Future of Privacy: Join the Noir Research Campaign for Provable Emails

In the ever-evolving landscape of digital privacy, the power of Zero-Knowledge Proofs (ZKPs) is revolutionizing how we protect and prove information. Noir, a leading language for privacy-first programmable privacy, is at the forefront of this innovation and is calling on you to help us enhance provable emails using Noir. This research campaign (NCR#1), running from August 8th - 25th, 2024 presents a unique opportunity to push the boundaries of privacy while creating novel solutions for secure email verification.

Why Privacy-First, Provable Emails?

The rise of Programmable Cryptography and Zero-Knowledge Proofs offers unprecedented potential for trustless and private verification of information, cryptographically bridging data across silos. Imagine a world where you can prove ownership of an email address or an email received without revealing its content or personal details. This capability is not just a theoretical possibility, but a practical reality waiting to be unlocked through advanced research and development.

What We’re Looking For

Aztec Labs has been a strong supporter of this vision, particularly with the ZK Email team's pioneering work. As a part of these continued efforts, we invite researchers, developers, tech enthusiasts, and anyone with creative ideas to propose a two-month research plan that explores ways to leverage Noir (and Aztec) to augment this work and its broader vision.

We’re looking for proposals focused on building end-user-oriented projects, including MVPs. Proposals focused on building developer tooling and technical/cryptography research are also welcome as long as their relevance to zkEmail is clear.

Multiple submissions are welcomed, however, to be considered, your proposal must meet the following criteria:

  • Implementation in Noir: Your final implementation should include components written in Noir, if not fully in Noir.
  • Testing and Documentation: Ensure thorough testing and comprehensive documentation of your implementation.
  • Open Source: The final implementation must be open-sourced under a permissive license (e.g., MIT).

How to Submit Your Proposal

To participate, please head to our GitHub and submit your proposal using the following format:

  • Title
  • Summary
  • Methodology
  • Timeline and Deliverables
  • Team
  • Start Date
  • Questions

Proposal submissions are open now and will close on August 25th, 2024. Our selection committee will pick two proposals that will receive up to US$40,000 in grants. Winners will be announced before September 5th, 2024, via GitHub Discussions and X.

Click here to get started on your proposal today.

Audit Partners

We believe in the value of the real-world impact of top-tier research.

To ensure the security and quality of applying research outcomes, we’re onboarding audit partners to sponsor and provide auditing for the final implementations of selected proposals. Potential audit partners will be evaluated up to August 20th, 2024, and announced on GitHub by August 31st, 2024.

To learn more about how to get involved, please contact Savio or Lisa.

Start Tinkering

Join us in pioneering the future of privacy-first communication. Submit your proposal and be part of this transformative journey with Noir!

Aztec Network
Aztec Network
24 Jun
xx min read

Is Account Abstraction abstract enough?

Special thanks to Palla, James Zaki, and Emmanuel Batse for the review.

Disclaimer: if you’re familiar with Account Abstraction and are curious about how it works on Aztec, go right to the section “The most abstract Account Abstraction”.

Account Abstraction context

What is AA and why did the Ethereum community give it this name?

  • Initially, all Ethereum accounts were Externally Owned Accounts (EOAs), controlled by the user’s private key (i.e. whoever has the private key owns the account).
  • With the Ethereum evolution, it became clear that to make Ethereum accounts more flexible and unlock a number of use cases, we need to abstract some or all parts of the accounts. However, this is expected to happen without sacrificing decentralization or censorship resistance.
  • Among the use cases to be unlocked are account recovery, gas sponsorship, multichain accounts, and support of signatures other than ECDSA, such as more efficient signatures (e.g. Schnorr, BLS), or more user-friendly ones (e.g. smartphone secure enclave).
  • Among the account parts to be abstracted are authentication (“Who I am”), authorization (“What I am allowed to do”), replay protection, fee payment, and execution. But strictly speaking, if we abstract even one of them we already call it AA.
  • Today, when one is talking about AA, they mean abstracted verification logic. It can be abstracted up to the protocol level or to the smart contract level. In particular, it usually implies that accounts are controlled by smart contracts (i.e. a piece of code) that describe the verification logic.
  • By native AA, we mean that AA is implemented at the protocol level. As a rule, in this case, all the accounts on the network are smart contracts (i.e. no EOAs at all).
  • By non-native AA, we mean that AA is implemented at the smart-contract level. In this case, there might be both EOAs and accounts controlled by smart contracts.

Note: the second option is sometimes also referred to as “contract wallets” or “smart accounts”.

The story of Account Abstraction

AA on Ethereum

The discussions around AA on Ethereum started around 2017. There were a number of EIPs and ERCs proposing different versions of AA (e.g. EIP-86, suggesting abstraction of transaction origin and signature, EIP-1014, and EIP-2938) that were explored and discussed but ultimately rejected, so we won’t cover them in this piece.

The first ERC affiliated with AA that made it to Ethereum mainnet was ERC-4337 (deployed on Mainnet in March 2023). It introduced AA without any modifications to the core protocol. It achieved this by replicating the functionality of the transactions mempool in a higher-level system. Instead of transactions, users send UserOperation objects to relayers, and these relayers package a set of these objects into a single standard transaction that is sent to Ethereum nodes.

Since then, the community has argued whether ERC-4337 is the Ethereum AA endgame or not. Right now, there is a dispute around EIP-3074 in the next Ethereum protocol upgrade. It suggests AUTH and AUTHCALL opcodes, which allow EOAs to delegate execution to smart contracts. However, one should note that the transaction validity still relies on EOAs’ ECDSA signature (i.e. ECDSA signature becomes enshrined).

This EIP is not new and some ecosystem players have discussed it being complementary to ERC-4337. The core question is what’s the more urgent problem for Ethereum to solve – censorship-resistance (against EIP-3074) or user experience (for EIP-3074)?

Account Abstraction on L2s

As Ethereum follows the rollup-centric roadmap, we expect most activity to happen on Ethereum L2s. As L2s technically don’t depend on Ethereum, they can implement AA on their own by introducing appropriate opcodes.

Some L2s have chosen a native AA “feature” as one of their core value propositions and implemented native AA (among those zkSync, StarkNet, and Aztec). In particular, this means that a transaction can be initiated directly by a smart contract (i.e. without any reliance on EOA).

As a comparison, in ERC-4337, AA is not native, as there is a step in the tx flow where an EOA account is engaged (as a Bundler).

Source

As an alternative to enshrining AA in Ethereum, the Rollup Improvement Proposal (RIP) was proposed. RIP is a way to facilitate L2 standardization (not only around AA but around other L2 aspects as well). RIP-7560 is a native version of ERC-4337 for L2 chains currently under discussion. Check a series of RollCalls to learn more.

The most abstract Account Abstraction

While we talk about “arbitrary verification logic” describing the intuition behind AA, the logic is not really arbitrary. The verification logic (i.e. what can be checked as an authorization) is limited to make the verification time fast and bounded. That is the case for all chains where transaction validity is checked by the sequencer. Otherwise, it will cause UX downfall, whereas the main reason behind introducing AA is UX improvement.

On Aztec, there is no limitation on verification logic, as transaction validity check is executed client-side and a proof of validity is supplied to the sequencer. The sequencer only verifies the proof and this process is independent of the verification logic complexity.

This unlocks a whole universe of new use cases and optimization of existing ones. Whenever the dapp can benefit from moving expensive computations off-chain, Aztec AA will provide a unique chance for an optimization. That is to say, on traditional chains users pay for each executed opcode, hence more complex operations (e.g. alternative signature verification) are quite expensive. In the case of Aztec, it can be moved off-chain so that it becomes almost free. The user pays for the operations in terms of client-side prover time.

For example:

  • Multisig contract with an arbitrary number of parties that can verify any number of signatures for free.
  • Oracle contract with an arbitrary number of data providers that can verify any number of data entries for free.

However, one should note that if the verification logic depends on the public state and requires a public function call (e.g. checking the balance), this check will be executed by the sequencer and imply some limitations on the allowed complexity of verification logic. For those who prefer watching over reading, here is a talk, “Account Abstraction for a Private Network”, by Santiago Palladino (Palla).ConclusionAA is not a new topic, however, AA on private networks unlocks new capabilities for arbitrary verification logic, allowing for more complex logic as well as significant cost optimizations.  Check documentation to dive into the details of Aztec’s AA. And if you are up to join Aztec’s building pioneers – express your interest in this form. Sources

  • The website ERC-4337.
  • An article, “Why 4337 and 3074 authors are disagreeing, and who got it right”.
  • Notes on the Account Abstraction roadmap.
  • A talk, “Account Abstraction for a Private Network” by Palla.