#

Inside Aztec

Inside
Aztec

purple_2
Aztec Network
30 Jan
xx min read

Aztec Ignition Chain Update

The first decentralized L2 on Ethereum reaches 75k block height with 30M $AZTEC distributed through block rewards.

In November 2025, the Aztec Ignition Chain went live as the first decentralized L2 on Ethereum. Since launch, more than 185 operators across 5 continents have joined the network, with 3,400+ sequencers now running. The Ignition Chain is the backbone of the Aztec Network; true end-to-end programmable privacy is only possible when the underlying network is decentralized and permissionless. 

Until now, only participants from the $AZTEC token sale have been able to stake and earn block rewards ahead of Aztec's upcoming Token Generation Event (TGE), but that's about to change. Keep reading for an update on the state of the network and learn how you can spin up your own sequencer or start delegating your tokens to stake once TGE goes live.

Block Production 

The Ignition Chain launched to prove the stability of the consensus layer before the execution environment ships, which will enable privacy-preserving smart contracts. The network has remained healthy, crossing a block height of 75k blocks with zero downtime. That includes navigating Ethereum's major Fusaka upgrade in December 2025 and a governance upgrade to increase the queue speed for joining the sequencer set.

Source: AztecBlocks

Block Rewards

Over 30M $AZTEC tokens have been distributed to sequencers and provers to date. Block rewards go out every epoch (every 32 blocks), with 70% going to sequencers and 30% going to provers for generating block proofs.

If you don't want to run your own node, you can delegate your stake and share in block rewards through the staking dashboard. Note that fractional staking is not currently supported, so you'll need 200k $AZTEC tokens to stake.

Global Participation  

The Ignition Chain launched as a decentralized network from day one. The Aztec Labs and Aztec Foundation teams are not running any sequencers on the network or participating in governance. This is your network.

Anyone who purchased 200k+ tokens in the token sale can stake or delegate their tokens on the staking dashboard. Over 180 operators are now running sequencers, with more joining daily as they enter the sequencer set from the queue. And it's not just sequencers: 50+ provers have joined the permissionless, decentralized prover network to generate block proofs.

These operators span the globe, from solo stakers to data centers, from Australia to Portugal.

Source: Nethermind 

Node Performance

Participating sequencers have maintained a 99%+ attestation rate since network launch, demonstrating strong commitment and network health. Top performers include P2P.org, Nethermind, and ZKV. You can see all block activity and staker performance on the Dashtec dashboard. 

How to Join the Network 

On January 26th, 2026, the community passed a governance proposal for TGE. This makes tokens tradable and unlocks the AZTEC/ETH Uniswap pool as early as February 11, 2026. Once that happens, anyone with 200k $AZTEC tokens can run a sequencer or delegate their stake to participate in block rewards.

Here's what you need to run a validator node:

  • CPU: 8 cores
  • RAM: 16 GB
  • Storage: 1 TB NVMe SSD
  • Bandwidth: 25 Mbps

These are accessible specs for most solo stakers. If you've run an Ethereum validator before, you're already well-equipped.

To get started, head to the Aztec docs for step-by-step instructions on setting up your node. You can also join the Discord to connect with other operators, ask questions, and get support from the community. Whether you run your own hardware or delegate to an experienced operator, you're helping build the infrastructure for a privacy-preserving future.

Solo stakers are the beating heart of the Aztec Network. Welcome aboard.

Most Recent
Aztec Network
22 Jan
xx min read

The $AZTEC TGE Vote: What You Need to Know

The TL:DR:

  • The $AZTEC token sale, conducted entirely onchain concluded on December 6, 2025, with ~50% of the capital committed coming from the community. 
  • Immediately following the sale, tokens could be withdrawn from the sale website into personal Token Vault smart contracts on the Ethereum mainnet.
  • The proposal for TGE (Token Generation Event) is now live, and sequencers can start signaling to bring the proposal to a vote to unlock these tokens and make them tradeable. 
  • Anyone who participated in the token sale can participate in the TGE vote. 

The $AZTEC token sale was the first of its kind, conducted entirely onchain with ~50% of the capital committed coming from the community. The sale was conducted completely onchain to ensure that you have control over your tokens from day one. As we approach the TGE vote, all token sale participants will be able to vote to unlock their tokens and make them tradable. 

What Is This Vote About?

Immediately following the $AZTEC token sale, tokens could be withdrawn from the sale website into your personal Token Vault smart contracts on the Ethereum mainnet. Right now, token holders are not able to transfer or trade these tokens. 

The TGE is a governance vote that decides when to unlock these tokens. If the vote passes, three things happen:

  1. Tokens purchased in the token sale become fully transferable 
  2. Trading goes live for the Uniswap v4 pool
  3. Block rewards become transferable for sequencers

This decision is entirely in the hands of $AZTEC token holders. The Aztec Labs and Aztec Foundation teams, and investors cannot participate in staking or governance for 12 months, which includes the TGE governance proposal. Team and investor tokens will also remain locked for 1 year and then slowly unlock over the next 2 years. 

The proposal for TGE is now live, and sequencers are already signaling to bring the proposal to a vote. Once enough sequencers have signaled, anyone who participated in the token sale will be able to connect their Token Vault contract to the governance dashboard to vote. Note, this will require you to stake/unstake and follow the regular 15-day process to withdraw tokens.

If the vote passes, TGE can go live as early as February 12, 2026, at 7am UTC. TGE can be executed by the first person to call the execute function to execute the proposal after the time above. 

How Do I Participate?

If you participated in the token sale, you don't have to do anything if you prefer not to vote. If the vote passes, your tokens will become available to trade at TGE. If you want to vote, the process happens in two phases:

Phase 1: Sequencer Signaling

Sequencers kick things off by signaling their support. Once 600 out of 1,000 sequencers signal, the proposal moves to a community vote.

Phase 2: Community Voting

After sequencers create the proposal, all Token Vault holders can vote using the voting governance dashboard. Please note that anyone who wants to vote must stake their tokens, locking their tokens for at least 15 days to ensure the proposal can be executed before the voter exits. Once signaling is complete, the timeline is as follows:

  • Days 1–3: Waiting period 
  • Days 4–10: Voting period (7 days to cast your vote)
  • Days 11–17: Execution delay
  • Days 18–24: Grace period to execute the proposal

Vote Requirements:

  • At least 100M tokens must participate in the vote. This is less than 10% of the tokens sold in the token sale.  
  • 66% of votes must be in favor for the vote to pass.

Frequently Asked Questions

Do I need to participate in the vote? No. If you don't vote, your tokens will become available for trading when TGE goes live. 

Can I vote if I have less than 200,000 tokens? Yes! Anyone who participated in the token sale can participate in the TGE vote. You'll need to connect your wallet to the governance dashboard to vote. 

Is there a withdrawal period for my tokens after I vote? Yes. If you participate in the vote, you will need to withdraw your tokens after voting. Voters can initiate a withdrawal of their tokens immediately after voting, but require a standard 15-day withdrawal period to ensure the vote is executed before voters can exit.

If I have over 200,000 tokens is additional action required to make my tokens tradable after TGE? Yes. If you purchased over 200,000 $AZTEC tokens, you will need to stake your tokens before they become tradable. 

What if the vote fails? A new proposal can be submitted. Your tokens remain locked until a successful vote is completed, or the fallback date of November 13, 2026, whichever happens first.

I'm a Genesis sequencer. Does this apply to me? Genesis sequencer tokens cannot be unlocked early. You must wait until November 13, 2026, to withdraw. However, you can still influence the vote by signaling, earn block rewards, and benefit from trading being enabled.

Where to Learn More

This overview covers the essentials, but the full technical proposal includes contract addresses, code details, and step-by-step instructions for sequencers and advanced users. 

Read the complete proposal on the Aztec Forum and join us for the Privacy Rabbit Hole on Discord happening this Thursday, January 22, 2026, at 15:00 UTC. 

Follow Aztec on X to stay up to date on the latest developments.

Aztec Network
6 Dec
xx min read

$AZTEC TGE: Next Steps For Holders

The TL;DR: 

The $AZTEC token sale was conducted entirely onchain to maximize transparency and fair distribution. Next steps for holders are as follows:

  1. Step 1: Create your Token Vault on the sale website. Your Token Vault will keep your tokens secure on Ethereum, keep them non-transferable until TGE, allow you to stake/delegate/participate in governance, and then withdraw them to your wallet after TGE.
  1. Step 2: Staking and Earning Block Rewards. If you have more than 200,000 tokens, you can start staking today on the staking dashboard
  1. Step 3: Token sale participants can vote for TGE as early as February 11th, 2026, at which 100% of tokens from the sale become transferable, and a Uniswap V4 pool goes live. 

The $AZTEC token sale has come to a close– the sale was conducted entirely onchain, and the power is now in your hands. Over 16.7k people participated, with 19,476 ETH raised. A huge thank you to our community and everyone who participated– you all really showed up for privacy. 50% of the capital committed has come from the community of users, testnet operators and creators!

Now that you have your tokens, what’s next? This guide walks you through the next steps leading up to TGE, showing you how to withdraw, stake, and vote with your tokens.

Step 1: Creating a Token Vault 

The $AZTEC sale was conducted onchain to ensure that you have control over your own tokens from day 1 (even before tokens become transferable at TGE). 

The team has no control over your tokens. You will be self-custodying them in a smart contract known as the Token Vault on the Ethereum mainnet ahead of TGE. 

Your Token Vault contract will: 

  • Keep your tokens secure on the Ethereum mainnet.
  • Ensure tokens remain non-transferable until TGE.
  • Allows you to stake, delegate, and take part in governance.
  • After TGE, you can withdraw your tokens to your wallet.

To create and withdraw your tokens to your Token Vault, simply go to the sale website and click on ‘Create Token Vault.’ Any unused ETH from your bids will be returned to your wallet in the process of creating your Token Vault. 

Step 2: Staking and Earning Block Rewards 

If you have 200,000+ tokens, you are eligible to start staking and earning block rewards today. 

You can stake by connecting your Token Vault to the staking dashboard, just select a provider to delegate your stake. Alternatively, you can run your own sequencer node.

If your Token Vault holds 200,000+ tokens, you must stake in order to withdraw your tokens after TGE. If your Token Vault holds less than 200,000 tokens, you can withdraw without any additional steps at TGE

Fractional staking for anyone with less than 200,000 tokens is not currently supported, but multiple external projects are already working to offer this in the future. 

Step 3: TGE 

TGE is triggered by an onchain governance vote, which can happen as early as February 11th, 2026. 

At TGE, 100% of tokens from the token sale will be transferable. Only token sale participants and genesis sequencers can participate in the TGE vote, and only tokens purchased in the sale will become transferrable. 

How does the voting process work? 

Community members discuss potential votes on the governance forum. If the community agrees, sequencers signal to start a vote with their block proposals. Once enough sequencers agree, the vote goes onchain for eligible token holders. 

Voting lasts 7 days, requires participation of at least 100,000,000 $AZTEC tokens, and passes if 2/3 vote yes.

What happens when the vote passes? 

Following a successful yes vote, anyone can execute the proposal after a 7-day execution delay, triggering TGE. 

At TGE, the following tokens will be 100% unlocked and available for trading: 

  • All tokens in Token Vaults that belong to token sale participants.
  • Accumulated block rewards for anyone staking.
  • Uniswap V4 pool. This pool will have 273,000,000 $AZTEC tokens and a matching ETH amount at the final clearing price. 

Join us Thursday, December 11th at 3 pm UTC for the next Discord Town Hall–AMA style on next steps for token holders. Follow Aztec on X to stay up to date on the latest developments.

Aztec Network
13 Nov
xx min read

The ticker is $AZTEC

We invented the math. We wrote the language. Proved the concept and now, we’re opening registration and bidding for the $AZTEC token today, starting at 3 pm CET. 

The community-first distribution offers a starting floor price based on a $350 million fully diluted valuation (FDV), representing an approximate 75% discount to the implied network valuation (based on the latest valuation from Aztec Labs’ equity financings). The auction also features per-user participation caps to give community members genuine, bid-clearing opportunities to participate daily through the entirety of the auction. 

How to Check Eligibility and Submit Your Bid 

The token auction portal is live at: sale.aztec.network

  • This is the only valid link to the $AZTEC token auction site. Be cautious of phishing scams. No one from the Aztec team will ever contact you directly for seed phrase or private keys. 
  • Visit the site to verify your eligibility and mint a soul-bound NFT that confirms your participation rights. 
  • We have incorporated zero-knowledge proofs into the sale smart contracts by using ZKPassport's Noir circuits to ensure compliant sanctions checks without risking the privacy of our users. 
  • Registration and bidding for early contributors start today, November 13th, at 3 PM CET, with early contributors receiving one day of exclusive access before bidding opens to the general public.
  • The public auction will run from December 2nd, 2025, to December 6th, 2025, at which point tokens can be withdrawn and staked.

Why Are We Doing This? 

We’ve taken the community access that made the 2017 ICO era great and made it even better. 

For the past several months, we've worked closely with Uniswap Labs as core contributors on the CCA protocol, a set of smart contracts that challenge traditional token distribution mechanisms to prioritize fair access, permissionless, on-chain access to community members and the general public pre-launch. This means that on day 1 of the unlock, 100% of the community's $AZTEC tokens will be unlocked.

This model is values-aligned with our Core team and addresses the current challenges in token distribution, where retail participants often face unfair disadvantages against whales and institutions that hold large amounts of money. 

Early contributors and long-standing community members, including genesis sequencers, OG Aztec Connect users, network operators, and community members, can start bidding today, ahead of the public auction, giving those who are whitelisted a head start and early advantage for competitive pricing. Community members can participate by visiting the token sale site to verify eligibility and mint a soul-bound NFT that confirms participation rights. 

To read more about Aztec’s fair-access token sale, visit the economic and technical whitepapers and the token regulatory report.

Discount Price Disclaimer: Any reference to a prior valuation or percentage discount is provided solely to inform potential purchasers of how the initial floor price for the token sale was calculated. Equity financing valuations were determined under specific circumstances that are not comparable to this offering. They do not represent, and should not be relied upon as, the current or future market value of the tokens, nor as an indication of potential returns. The price of tokens may fluctuate substantially, the token may lose its value in part or in full, and purchasers should make independent assessments without reliance on past valuations. No representation or warranty is made that any purchaser will achieve profits or recover the purchase price.

Information for Persons in the UK: This communication is directed only at persons outside the UK. Persons in the UK are not permitted to participate in the token sale and must not act upon this communication.

MiCA Disclaimer: Any crypto-asset marketing communications made from this account have not been reviewed or approved by any competent authority in any Member State of the European Union. Aztec Foundation as the offeror of the crypto-asset is solely responsible for the content of such crypto-asset marketing communications. The Aztec MiCA white paper has been published and is available here. The Aztec Foundation can be contacted at hello@aztec.foundation or +41 41 710 16 70. For more information about the Aztec Foundation, visit https://aztec.foundation.

Aztec Network
28 Oct
xx min read

Your Favorite DeFi Apps, Now With Privacy

Every time you swap tokens on Uniswap, deposit into a yield vault, or vote in a DAO, you're broadcasting your moves to the world. Anyone can see what you own, where you trade, how much you invest, and when you move your money.

Tracking and analysis tools like Chainalysis and TRM are already extremely advanced, and will only grow stronger with advances in AI in the coming years. The implications of this are that the ‘pseudo-anonymous’ wallets on Ethereum are quickly becoming linked to real-world identities. This is concerning for protecting your personal privacy, but it’s also a major blocker in bringing institutions on-chain with full compliance for their users. 

Until now, your only option was to abandon your favorite apps and move to specialized privacy-focused apps or chains with varying degrees of privacy. You'd lose access to the DeFi ecosystem as you know it now, the liquidity you depend on, and the community you're part of. 

What if you could keep using Uniswap, Aave, Yearn, and every other app you love, but with your identity staying private? No switching chains. Just an incognito mode for your existing on-chain life? 

If you’ve been following Aztec for a while, you would be right to think about Aztec Connect here, which was hugely popular with $17M TVL and over 100,000 active wallets, but was sunset in 2024 to focus on bringing a general-purpose privacy network to life. 

Read on to learn how you’ll be able to import privacy to any L2, using one of the many privacy-focused bridges that are already built. 

The Aztec Network  

Aztec is a fully decentralized, privacy-preserving L2 on Ethereum. You can think of Aztec as a private world computer with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

On Aztec, every wallet is a smart contract that gives users complete control over which aspects they want to make public or keep private. 

Aztec is currently in Testnet, but will have multiple privacy-preserving bridges live for its mainnet launch, unlocking a myriad of privacy preserving features.

Bringing Privacy to You

Now, several bridges, including Wormhole, TRAIN, and Substance, are connecting Aztec to other chains, adding a privacy layer to the L2s you already use. Think of it as a secure tunnel between you and any DeFi app on Ethereum, Arbitrum, Base, Optimism, or other major chains.

Here's what changes: You can now use any DeFi protocol without revealing your identity. Furthermore, you can also unlock brand new features that take advantage of Aztec’s private smart contracts, like private DAO voting or private compliance checks. 

Here's what you can do:

  • Use DeFi without revealing your portfolio: trade on Uniswap or deposit into Yearn without broadcasting your strategy to the world
  • Donate to causes without being tracked: support projects on Base without linking donations to your identity
  • Vote in DAOs without others seeing your choices: participate in governance on Arbitrum while keeping your votes private
  • Prove you're legitimate without doxxing yourself: pass compliance checks or prove asset ownership without revealing which specific assets you hold
  • Access exclusive perks without revealing which NFTs you own: unlock token-gated content on Optimism without showing your entire collection

The apps stay where they are. Your liquidity stays where it is. Your community stays where it is. You just get a privacy upgrade.

How It Actually Works 

Let's follow Alice through a real example.

Alice wants to invest $1,000 USDC into a yield vault on Arbitrum without revealing her identity. 

Step 1: Alice Sends Funds Through Aztec

Alice moves her funds into Aztec's privacy layer. This could be done in one click directly in the app that she’s already using if the app has integrated one of the bridges. Think of this like dropping a sealed envelope into a secure mailbox. The funds enter a private space where transactions can't be tracked back to her wallet.

Step 2: The Funds Arrive at the DeFi Vault

Aztec routes Alice's funds to the Yearn vault on Arbitrum. The vault sees a deposit and issues yield-earning tokens. But there's no way to trace those tokens back to Alice's original wallet. Others can see someone made a deposit, but they have no idea who.

Step 3: Alice Gets Her Tokens Back Privately

The yield tokens arrive in Alice's private Aztec wallet. She can hold them, trade them privately, or eventually withdraw them, without anyone connecting the dots.

Step 4: Alice Earns Yield With Complete Privacy

Alice is earning yield on Arbitrum using the exact same vault as everyone else. But while other users broadcast their entire investment strategy, Alice's moves remain private. 

The difference looks like this:

Without privacy: "Wallet 0x742d...89ab deposited $5,000 into Yearn vault at 2:47 PM"

With Aztec privacy: "Someone deposited funds into Yearn vault" (but who? from where? how much? unknowable).

In the future, we expect apps to directly integrate Aztec, making this experience seamless for you as a user. 

The Developers Behind the Bridges 

While Aztec is still in Testnet, multiple teams are already building bridges right now in preparation for the mainnet launch.

Projects like Substance Labs, Train, and Wormhole are creating connections between Aztec and major chains like Optimism, Unichain, Solana, and Aptos. This means you'll soon have private access to DeFi across nearly every major ecosystem.

Aztec has also launched a dedicated cross-chain catalyst program to support developers with grants to build additional bridges and apps. 

Unifying Liquidity Across Ethereum L2s

L2s have sometimes received criticism for fragmenting liquidity across chains. Aztec is taking a different approach. Instead, Aztec is bringing privacy to the liquidity that already exists. Your funds stay on Arbitrum, Optimism, Base, wherever the deepest pools and best apps already live. Aztec doesn't compete for liquidity, it adds privacy to existing liquidity.

You can access Uniswap's billions in trading volume. You can tap into Aave's massive lending pools. You can deposit into Yearn's established vaults, all without moving liquidity away from where it's most useful.

The Future of Private DeFi

We’re rolling out a new approach to how we think about L2s on Ethereum. Rather than forcing users to choose between privacy and access to the best DeFi applications, we’re making privacy a feature you can add to any protocol you're already using. As more bridges go live and applications integrate Aztec directly, using DeFi privately will become as simple as clicking a button—no technical knowledge required, no compromise on the apps and liquidity you depend on.

While Aztec is currently in testnet, the infrastructure is rapidly taking shape. With multiple bridge providers building connections to major chains and a dedicated catalyst program supporting developers, the path to mainnet is clear. Soon, you'll be able to protect your privacy while still participating fully in the Ethereum ecosystem. 

If you’re a developer and want a full technical breakdown, check out this post. To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Explore by Topic
Noir
Noir
24 Jun
xx min read

Announcing the Noir awardees of the inaugural EF ZK Grants Wave

Aztec Labs is committed to enabling developers to build with ZK and unlock the full potential of this transformative technology. To that end, we built Noir, an open source Domain Specific Language for safe and seamless construction of privacy-preserving ZK proofs. We fund tooling, libraries, and applications that make Noir more accessible and enjoyable for developers.

Earlier this year, the Ethereum Foundation announced the first ZK Grants Round, a cofunded proactive grants round to encourage research and development for Zero-Knowledge proofs and standards for ZK L2s. Aztec Labs contributed US$150,000 to the US$900,000 prize pool alongside other projects such as Polygon, Scroll, Taiko, and zkSync. We sponsored this initiativeas a part of our commitment to support builders who are advancing ZK across dimensions including research, performance, tooling, and applications.

We were thrilled to see submissions to the ZK Grants Round from both new and existing Noir contributors. In this post, we want to highlight the ZK Grants Wave awardees for the Noir ecosystem to showcase what the community is working on and provide inspiration for how you could contribute.

Plonky2 backend for ACIR

Team: @eryxcoop, @manastech

Noir is back-end agnostic and its Arithmetic Circuit Intermediate Representation (ACIR) can be integrated with different proving backends. This project will enable Noir users to prove and verify their programs with Plonky2 technology, unlocking more possibilities to develop blockchain and ZK infrastructure with Noir. Meanwhile, it will also allow Plonky2 users to benefit from Noir’s developer-friendly abstractions, tooling, and growing sets of libraries, lowering the barrier of entry to the proving technology.

Detecting Private Information Leakage in Zero-Knowledge Applications

Team: @schaliasosvons, @theosotir

Noir abstracts away underlying cryptography so it’s accessible to a broader developer base. However, one risk of these abstractions is unintentionally leaking private variable information. This tool will apply static analysis, taint tracking, input generation, and SMT solving to detect privacy leaks in Noir program designs. Noir users can leverage this easy to use framework and debugging tool to identify, analyze and amend such leakages in their projects.

ZK Benchmarks

Team: @wz__ht

Performance benchmarking varies across different languages and proving systems. This project aims to produce benchmarking suites, articles, and a website that compares and informs developers about characteristics, performance, and tradeoffs between Noir-compatible and other proving backends in the ZK ecosystem.

ZK Treesitter

Team: @wz__ht

Noir reduces barriers for developers to use ZK with its simple and familiar Rust-like syntax. But a solid developer experience is more than just language design. It also depends on a strong ecosystem of developer tooling. This project will offer treesitter grammars that unlock features like syntax highlighting and code formatting for the language in more development environments like Helix and Neovim – providing Noir developers with more flexibility and choice.

Onboard users to verifiable KYC

Team: Neoxham, Lakonema2000, @0x18a6

Noir tooling and libraries are created to support and enable application developers who solve problems using ZK. This team will leverage Noir to create an educational end-to-end example of verifiable Know Your Customer (KYC) with compliance checks, and provide onboarding guides to increase adoption of the application.

We are grateful to the Ethereum Foundation for coordinating the ZK Grants Round and to the teams who submitted proposals. We look forward to seeing how the Noir community leverages these tools and resources to build the next wave of ZK powered applications.

If you’d like to learn more about Noir, read our docs and follow @NoirLang for more contribution opportunities coming soon.

Aztec Network
Aztec Network
11 Mar
xx min read

Client-side Proof Generation

TL;DR

The proof generation for a privacy-preserving zk-rollup differs a lot from that of a general-purpose zk-rollup. The reason for this is that there is specific data in a given transaction (processed by private functions) that we want to stay completely private. In this article, we explore the client-side proof generation used for proving private functions’ correct execution and explain how it differs from proof generation in general-purpose rollups.

Contents

  • What proofs are and how they work in general-purpose zk-rollups
  • How proofs work in Aztec
  • Proving functions’ correct execution
  • For public functions: rollup-side proof generation
  • For private functions: client-side proof generation
  • An example proof
  • How client-side proof generation decreases memory requirements
  • Appendix: other details of client-side proof generation.
  • Summary

What proofs are and how they work in general-purpose zk-rollups

Disclaimer: If you’re closely familiar with how zk-rollups work, feel free to skip this section.

Before we dive into proofs on Aztec, specifically the privacy-first nature of Aztec’s zk-rollup, let’s recap how proofs work on general-purpose zk-rollups.

When a stateful blockchain executes transactions, it conducts a state transition. If the state of the network was originally A, then a set of transactions (a block) is executed on the network, the state of the network is now B.

Rollups are stateful blockchains as well. They use proofs to ensure that the state transition was executed correctly. The proof is generated and verified for every block. All proofs are posted on L1, and anyone can re-verify them to ensure that the state transition was done correctly.

For a general-purpose zk-rollup, proof generation is very straightforward, as all data is public. Both the sequencer and the prover see all the transaction data, public states are public, and the data necessary to reconstruct each state transition is posted on L1.

How proofs work in Aztec

Aztec’s zk-rollups are a different story. As we mentioned in the previous article, in the Aztec network, there are two types of state: public and private.

Aztec smart contracts (written in Noir) are composed of two types of functions: private and public.

  • Private functions – user-owned state, client-side proof generation
  • Public functions – global/public state, rollup-side proof generation

For both of these, we need proof of correct execution. However, as the anatomy of private and public functions is pretty different, their proof generation is pretty different too.

As a brief overview of how Aztec smart contracts are executed: first, all private functions are executed and then all public functions are executed.

However, diving into the anatomy of Aztec smart contracts is outside the scope of this piece. To learn more about it, check the previous article.

Here, we will focus on the correct proof generation execution of private functions and why it is a crucial element of a privacy-first zk-rollup.

The concepts of private state and private functions in blockchain might seem a little unusual. The following map describes the path of this article, where we will shed some light on the difference between how proofs work for private and public states respectively.

Proving functions’ correct execution

For public functions: rollup-side proof generation

Let’s start by looking at public function execution, as it is more similar to other general-purpose zk-rollups.

Public state is the global state available to everyone. The sequencer executes public functions, while the prover generates the correct execution proof. In particular, the last step means that the function (written in Noir) is compiled in a specific type of program representation, which is then evaluated by a virtual machine (VM) circuit. Evaluated means that it will execute the set of instructions one by one, resulting in either a proof of correct execution or failure. The rollup-side prover can handle heavy computation as it is run on powerful hardware (i.e. not a smartphone or a computer browser as in the client-side case).

For private functions: client-side proof generation

Private state on the other hand is owned by users. When generating proof of a private transaction's correct execution, we want all data to stay private. It means we can’t have a third-party prover (as in the case of public state) because data would be subsequently exposed to the prover and thus no longer be private.

In the case of a private transaction, the transaction owner (the only one who is aware of the transaction data) should generate the proof on their own. That is, the proof of a private transaction's correct execution has to be generated client-side.

That means that every Aztec network user should be able to generate a proof on their smartphone or laptop browser. Furthermore, as an Aztec smart contract might be composed of a number of private functions, every Aztec network user should be able to generate a number of proofs (one proof for each private function).

On the rollup side, block proofs are generated using ZK-VM (ZK virtual machine). On the private side, there is no VM.

Instead, each private function is compiled into a static circuit on its own.

When we say “a circuit”, we’re referring to a table with some precomputed values filled in. This table describes the sequence of instructions (like MUL and ADD) to be executed during a particular run of the code.

There are a bunch of predefined relations between the rows and columns of the table, for example, copy constraints that state that the values of a number of wires are expected to be the same.

Let’s take a look at a quick example:

In the diagram above, we have two gates, Gate 1 (+) and Gate 2 (x). As we can see, z is both the output of Gate 1 (denoted as w3, wire 3) and the left input to Gate 2 (denoted as w4, wire 4). So, we need to ensure that the value of the output of Gate 1 is the same as the value of the left input of Gate 2. That is, that w3 = w4. That’s exactly what we call “checking copy constraints”.

When we say that the verifier verifies the circuit, we mean it checks that these predefined relations hold for all rows and columns.

An example proof

Disclaimer: the following example reflects the general logic in a simplified way. The real functions are much more complex.

Assume we have a function a2+b2=c2. The goal is to prove that equality holds for specific inputs and outputs. Assume a = 3, b = 4, c = 5.

As a piece of code, we can represent the function as the following:

When the function is executed, the result of each step is written down in a table. When this table is filled with the results of the specific function execution on specific values, it’s called an execution trace.

This is just a fragment of the table, with values and opcode names. However, to instruct the computer about which operation should be executed in which specific row, the opcode name is not enough; we need selectors.

Selectors are gates that refer to toggling operations (like an on/off switch). In our example, we will use a simplified Plonk equation with two selectors: qADD for the addition gate and qMUL for the multiplication gate. The simplified Plonk equation is: qMUL(a*b)+qADD(a+b)-c=0.

Turning them on and off, that is, assigning values 1 and 0, the equation will transform into different operations. For example, to perform the addition of a and b, we put qADD= 1, qMUL=0, so the equation is a+b-c =0.

So, for each performed operation, we also store in the table its selectors:

How client-side proof generation decrease memory requirements

In the case of private functions, as each function is compiled into a static circuit, all the required selectors are put into the table in advance. In particular, when the smart contract function is compiled, it outputs a verification key containing a set of selectors.

In the case of a smart contract, the circuit is orders of magnitude larger as it contains more columns with selectors for public function execution. Furthermore, there are more relation checks to be done. For example, one needs to check that the smart contract bytecode really does what it is expected to do (that is, that the turned selectors are turned according to the provided bytecode commitment).

As a mental model, you can think about a smart contract circuit as a table where 50 out of 70 columns are reserved for the selectors' lookup table. Storing the entire table requires a lot of memory.

Now you see the difference between circuit size for client-side and rollup-side proof generation: on the client-side, circuits are much smaller with lower memory and compute requirements. This is one of the key reasons why the proofs of private functions' correct execution can be generated on users’ devices.

Appendix: other details of client-side proof generation

  • To further decrease memory and computation requirements for the prover, we use a specific proving system, Honk, which is a highly optimized Plonk developed by Aztec Labs. Honk is a combination of Plonk-ish arithmetization, the sum-check protocol (which has some nice memory tricks), and a multilinear polynomial commitment scheme.
  • Some gadgets that may be added to Honk to make it even more efficiet include Goblin Plonk, a specific type of recursion developed by Aztec Labs, and ProtoGalaxy, developed by Liam Eagen and Ariel Gabizon.
  • Goblin Plonk allows a resource-constrained prover to construct a zk-snark with multiple layers of recursion. That perfectly fits the case of client-side proof generation, where a proof of each private function in a smart contract is an additional layer of the recursion. The trick is that expensive operations (such as Elliptic Curve operations) at each recursion layer are postponed to the last step instead of being executed at each. The recursion ends in one single proof for all the private functions in a smart contract.
  • This proof is then verified by the rollup circuit. The recursive verification of this proof is pretty resource intensive. However, as it is performed rollup-side, it has enough computation and memory resources.
  • ProtoGalaxy is a folding scheme that optimizes the recursive verifier work. It allows for folding multiple instances in one step, decreasing the verifier’s work in each folding step to a constant.
  • Diving into Honk and its optimizations is outside the scope of this article, but we promise to cover it soon in upcoming pieces.

Summary

Client-side proof generation is a pretty novel approach for the blockchain domain. However, for privacy-preserving solutions, it is an absolute must-have. Aztec Labs has spent years developing the protocol and cryptography architecture that make client-side proof generation performance feasible for the production stage.

You can help build it further.

Vision
Vision
7 Mar
xx min read

Regeneration: a Manifesto for an Autonomous Future

The following is written by Zac Williamson, with inspiration and advice from Arnaud Schenk.

My fellow companions, my decentralized brothers and sisters. I wish to tell you a story, about complicated people and their struggles to resolve the wreckage of their contradictions. It is a story of humanity.

We are at a unique point in history and stand at the threshold of two worlds. One world is a propagation of our present, a status quo antebellum with all of its associated joys and sorrows.

There is another door, one hidden from view except for those with the sight to see it. You and I are here because we see a unique vision of the future, one of high technology and high ideals, that advance human beings from their status as a commodity resource in a globalized world, to free actors imbued with autonomy and purpose, who bow to no one.

I want to articulate this vision and examine the forces that drive us. Despite our successes and dedication it is clear that our current achievements fall short of our aspirations. We must reconcile this.

Bitcoin is not yet a credible threat to traditional currencies. Paying for goods and services with cryptocurrency is a niche luxury for the technologically well-connected. Decentralized autonomous organizations (DAOs) are yet to govern anything that is not a cryptocurrency project. A notable exception was ConstitutionDAO, which immediately failed in its goals due to the intrinsic limitations of trustless blockchain networks.

There are missing pieces in the technological armaments we have fashioned. I want to show you the missing pieces. I want to go back to the roots: what are the systems and frameworks we want to disrupt? Which properties do blockchain networks need for us to forge a conspiracy against the present, and fight for our vision of the future?

Control Factions

Reaching back into prehistory, humanity has been waging a war against itself – a war that pits the freedom and autonomy of individuals against the safety and control of institutions.

We want to be free. We want to be safe. This is the eternal contradiction.

To acquire safety we bind ourselves to institutions. Within these institutions, control factions form. They metastasize and act to entrench their power and influence by monopolizing human agency. This triggers inevitable conflict and revolt, which acts to reset the equilibrium.

How best we can resolve the contradiction between freedom and safety is a function of social organization, the quality of which is gated behind technological innovation.

Blockchain is one such technology. To identify what we need, we must identify the weaknesses of the institutions we seek to undermine, and tailor our strengths against them.

The competency crisis

Control factions have a fatal weakness: they reject competence.

Competent people threaten individuals within entrenched power structures. A competent subordinate is a threat to your power and privileges. This is the so-called “dictator trap”, but the mechanics at play extend to all power structures, from the boards of mega-corporations to the local residents association. But it’s not a dictator trap, it is an institution trap.

Power craves legibility and predictability and will act on these desires by exerting control – limiting agency and freedom of action.

Re-distributing institutional control

We want to undermine institutional control, and redistribute control down to smaller units of organization.

Blockchain technology enables such radical new forms of social organization that fall outside the frameworks of traditional institutions.

We possess a keystone technology that enables mass peer-to-peer coordination, initially of cryptocurrency assets but this can be generalized to anything with perceived value that can be given a digital fingerprint.

Blockchain networks have radically different incentive mechanisms to traditional modes of social organization.

Because blockchains are coordination engines. They enable individuals to coordinate on how to deploy their collective resources. This type of mass-coordination of personal resources is unique and will subtly act to profoundly re-distribute the existing power structures of the present.

Why? Blockchains weaken the fundamental value propositions of vertically integrated companies that extract a profit from information asymmetries. Individuals whose skills serve large institutions can more easily decide for themselves how best to apply their skills, without the need for the institution’s support frameworks. As a coordination engine, blockchain networks can efficiently combine the skills and capital required to execute grand ideas, as well as provide a digital market for resulting products.

A global marketplace of programmable money is one with profound information transparency. The ability of independent groups to analyze the market enables great efficiency and reduces information asymmetries. Though, does not delete them entirely.

In short, blockchain networks are pro-competency. They allow individuals to decide for themselves how their skills can best be utilized and deployed, instead of having that decided for them by a control faction. Competent people add value to the network and in doing so, provide another composable brick that others can use in their constructions. The raw incentives create a positive-sum game.

Missing pieces

What are the missing pieces?

The great difficulty in realizing our vision is the limited ability of current blockchains to reach into the real world.

We are not our online avatars. We exist in a physical space and we have physical needs that must be satisfied. We are bound to networks of obligation and responsibility that societies depend upon to maintain social order. We cannot live in an NFT.

The real world matters. Without a way of linking real-world identities to blockchains, the grand cypherpunk vision for blockchain can never be fully realized – only a neutered form of primitive electronic sovereignty.

The new information networks: composable privacy

The new information networks we are building lack a key ingredient: composable privacy.

By using novel cryptography, we can turn blockchains into encrypted ledgers where transactions hide their execution from observers. Identities can be encrypted, but still used to prove statements about the user, and without involving an additional institutional third party. e.g. “I have a U.S. passport”, “I have a digital driving license”, “I have a Twitter account with over 1,000 followers”, “I signed in with a Google account”.

The effect of this is to build trust infrastructure that allows human beings to iteratively build trust between themselves and to do so rapidly and at scale.

Programmable private blockchains stand to usher in a revolution in how distributed systems can be used. Without strong identity guarantees, the only workable governance mechanisms for distributed on-chain organizations are autocracy and plutocracy.

However, if past actions can be uniquely tied to a cryptocurrency account, it is possible to identify key stakeholders and to give them an accelerated role in governance. That enables a much more democratic architecture of governance systems.

Privacy technology is required to turn blockchains into the coordination engines they were always destined to be.

The future we are building does not outright destroy existing systems of control – it breaks them apart and replicates these systems on a smaller scale. Lower barriers to entry lead to greater competition and market fragmentation and act to limit the ability of distributed organizations to consolidate power.

Because coordination engines are pro-competency.

Privacy for the user, transparency for the protocol

There is a phrase I think we will hear much of over the coming years: privacy for the user, transparency for the protocol.

The capabilities of private programmable blockchains and the outcomes they enable are not commonly understood. A private blockchain is not one where all information and data are intrinsically hidden. They are hybrid systems where public and private data coexist. Application designers and users can choose which data is hidden.  

Efficient markets require data transparency. Data relating to identity requires data confidentiality. The solution is applications where information that relates to assets is public, and information relating to users (e.g. who owns said assets) is private.

To create a privacy-preserving ecosystem it must be possible for confidential, transparent, and hybrid applications to directly interact with one another. Privacy is not an aftermarket add-on to be bolted onto a few select applications. Full composability is essential to develop a rich ecosystem.

Composability enables trust-building networks by allowing individuals to put core aspects of themselves on-chain, disclosing it only selectively and enabling distributed protocols to use these capabilities in a composable permissionless manner, without leaking information. Who are you? What have you done? What do you want to do? With privacy, we can disclose this information to smart contracts and hide it from people. These will form core primitives of our new information networks.

I have spent the last 6 years building exactly this, through building Aztec. Crafting the missing ingredient, privacy, via cutting-edge cryptography, zero-knowledge proofs, and raw engineering.  

Values of the new information networks

Networks have values that are independent of their creators. Networks live or die on the quality of their network effects. This incentive gives network participants a shared motivation to expand the network. The more nodes that exist, the greater the value individual nodes can extract from the network. The manner in which the network changes itself to act on these motivations defines its intrinsic values.

What are the intrinsic values of permissionless programmable privacy networks like Aztec? We can derive these from the fundamental value proposition – to expose a rich ecosystem of composable, confidential applications, and to do this as a permissionless, decentralized network. This enables individuals and small groups to compete in industries dominated by large players leveraging large information asymmetries.

Such networks are, at their very core, pro-competency. If you have something useful to add to the network, you can. If you want to use existing network components in your product, go right ahead. No need to ask for permission from the network.

From this starting point we can anticipate the cycles of action and reaction that will drive networks like Aztec to adopt the following values over their lives:

  • They are pro-emergence and pluralistic.
  • They strongly desire individual autonomy and freedom of action.
  • They are fiercely anti-elite, but not necessarily anti-elitism.
  • Finally, they seek to undermine traditional frameworks of control and subjugation used to promote institutional stability.

Blockchain networks grow by harnessing the industry and enterprise of as many human souls as they can get their hands on.  

Without mechanisms of coercion to fall back on, the network must ensure a positive-sum game for network participants who add value. These also happen to be values that I believe I strongly hold. This is not a coincidence. I started in web3 seven years ago building a marketplace for corporate debt on Ethereum and by degrees ended up building a distributed programmable privacy network on Ethereum. This was not due to some grand design but, I think, the cumulative effects of seven years of following my impulses. To find a place of belonging.

This feeling is something you may share – that the frameworks and systems produced by our societies offer none of us a true sense of belonging and purpose. But here, amongst our companions, we have found belonging through building a shared vision of a radical new world.

The road ahead

There is a long road to walk to realize the ambitions of the new information networks. The technology is barely capable and challenging to build. The architecture is novel and challenging to design. Convincing people to build on radical foundations to bootstrap a market is challenging. Building competitive infrastructure and tooling is challenging.

The challenge is irrelevant. We cannot become a generation scorned by our descendants for squandering the opportunity of a lifetime.

We will build and deploy the new information networks and by degrees will learn how to use them to chip away at the inequities of the status quo, and the social order that upholds it.

Equipped with such armaments and driven by our ideals, we will pull our ideas into reality. Together, we will forge our digital Eden.

Noir
Noir
3 Jan
xx min read

Interview with Kev Wedderburn, Father of Noir

Kev Wedderburn is the father, architect, and team lead of Noir, a universal zero knowledge circuit writing language funded by Aztec Labs.

We're excited to bring you this interview and profile of the man and mystery behind the DSL creating a step-function change in the accessibility of ZK programs.

Alyssa: Hey Kev! Thanks so much for your time, I’d love to give readers a snapshot of your journey into web3 and Aztec Labs, as well as your focus on the Noir team.

Kev: Sure! Let’s jump in.

Alyssa: Can you start by sharing your web2 background?

Kev: Yes. I started out as a front-end developer, then moved into app development.

I built a social media site for books. Then, a janky music-sharing app that would check your playlist, then check my playlist, then if our playlists overlapped enough, it would recommend each of us songs on each other's playlist (this was before Spotify became Spotify I think).

Alyssa: How’d app development lead you to going full-time web3?

Kev: While transitioning to crypto, I made a tax app that scanned your bitcoin QR code and told you how much tax you owed.

From there, I started doing tutorial videos focused on smart contracts. I wanted to do one for a particular blockchain, and it turned out that they didn’t have a well-functioning wallet. So that’s actually what led to my entry into the web3 space. I didn’t end up finishing that tutorial, I just went on to build the wallet myself.

Alyssa: And this work led to your first formal web3 role?

Kev: Eventually, yes. While I was working on an improved wallet, I noticed the node that the original wallet was interacting with wasn’t that great either. So once the new wallet was finished, I moved on to creating a node in Golang (the wallet was also originally built in Golang).

After I finished the node, I got recruited by a privacy-focused project. And they asked me to build a node for their privacy network.

Once I dug deeper, it turned out they didn’t have a proving system. So then I started learning cryptography to implement a type of ZK proof called bulletproofs — state of the art at the time.

Alyssa: And you’ve primarily worked on privacy within web3 ever since, is that right?

Kev: Yes, I worked for several other privacy blockchains prior to Aztec, such as Monero. At Monero, I pivoted from implementing Bulletproofs to Plonk for increased proving speed, but noticed it was very challenging to program on top of Plonk.

The Plonk constraint system and proving system both have nice properties, but the UX was really bad. So Kobi Gurkan from Geometry Research, and Barry Whitehat from the Ethereum Foundation asked if I wanted to make a compiler — I guess they saw that I was pretty active within Plonk and cryptography in general.

Alyssa: Had you built one before?

Kev: At the time, I didn’t know much about compilers at all, so it was exciting to figure out what the compiler I’d build would look like, what other compilers were doing, and how to make a compiler with the safety guarantees needed for zero knowledge proofs.

That was the beginning of what we now call Noir, and I’ve been at Aztec since.

Alyssa: Wow, okay, so you’ve been with the Noir project since the beginning of Noir’s existence?

Kev: Yeah, exactly.

Alyssa: Amazing, congrats on all the progress you and the team have made. And what about getting into web3 in the first place? Was it through engineering, or your own interest in cryptocurrency? How did that look?

Kev: I first looked at Bitcoin in university, but was deterred by the codebase being challenging to read. But I wanted to learn Bitcoin and teach people about it. Back then, everything was a bit scammy. I even created a Bitcoin book…

Alyssa: Going back to Noir, how do you feel about the experience of learning the language you helped build? Is it intuitive for developers?

Kev: I can tend to over-criticize the things I do. But Noir’s in a solid place. There’s not much to really compare it to….there are other zkDSLs, but they give different guarantees for the most part. For example, Noir provides devs with a high-level language that aims not to sacrifice performance and safety, while Circom gives devs very little safety but allows them to do anything. There are pros and cons to both of these approaches.

The more control you give to a developer, the more powerful things they can do, but they can also easily make mistakes because the compiler is no longer holding your hand or stopping you from doing something potentially dangerous.

But yes, Noir is in a good place for developers to use. There’s still a lot we want to put into the language to make it comparable to common programming languages in terms of UX. But we’re well on our way.

Alyssa: And what about just being on the Aztec Labs team in general, and maybe even the Noir team within Aztec Labs? What’s that like? What do you enjoy about it?

Kev: The Aztec team is cross-functional and fluid, meaning that even though you’re on the Noir team, or the tooling team, or the engineering team, you can touch other parts of the stack. So that’s great about being at Aztec.

The fun thing about the Noir team in particular is that there are so many challenges we have yet to solve. We’ve solved quite a lot of them, but there’s still a lot we’re excited to work on like continuing to improve the UX, as I mentioned.

Alyssa: Love that answer as I know there’s a job opening on the Noir team, so someone joining can have exposure beyond understanding their specific role.

Kev: In fact, we encourage that, if you’re on tooling and you want to create something and the compiler just doesn’t seem to be fit to do what you want, feel free to start some print or tasks to modify the compiler. We’re always open to new ideas.

Alyssa: Really cool, that’s great. And what about beyond web3, any general interests or hobbies?

Kev: Generally speaking, I really like maths. I also used to sing and play guitar for quite a while, and I exercise a lot these days.

Alyssa: Thanks again for the chat, great learning a bit more about your work, Kev!

Kev: Thank you!

Get started with Noir

We think Noir has the best syntax, most modularity, and best ecosystem of any ZK language. But don't take our word for it.

Get started with Noir at noir-lang.org.